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Main research topics
• Integration of PV in grids and integration in buildings
• PV system performance analysis and forecasting
• Energy management using EVs and V2G
• Solar energy harvesting windows (LSC)

Short resume
• Professor of Integration of Photovoltaic Solar Energy, Copernicus Institute, Utrecht 

University (2018 – present)
• Associate/Assistant Professor Copernicus Institute, Utrecht University (2001 – 2018)
• Postdoc/PhD/MSc/BSc in Experimental Physics on PV cell development (1977– 2001)
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PV development 1980-2021

My “PV life”
1982: 
20 MWp, 20 $/Wp 
2020: 
740 GWp, 0.20 $/Wp

2021: 
>900 GWp (est)



5https://americanhistory.si.edu/collections/search/object/nmah_1804625

Solarex, 50x25cm2, 
3-inch wafers, 10Wp, 
3x6=24 cells

Shell Solar ACN 2000E, 95 Wp
12x6=72 10x10 cm2 cells

Sunpower, 400 Wp
15x15 cm2 monoSi cells

1983 1999 2020
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Solar park at Kolham near Hoogezand, one of the 
big parks that have been realized in the North



QUIZ
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When will the total installed PV capacity globally 
have reached 1 terawattpeak? 

Assumptions: 
900 GWp end 2021

annual market 150 GWp
à 1 September 2022



Europe
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• Globally installed PV (2020): 740 GWp à 1000 TWh
• In Europe: 150 GWp à 200 TWh
• Growth has been slow in the past years

CHAPTER 2 PV MARKET DEVELOPMENT TRENDS

IEA PVPS TRENDS IN PHOTOVOLTAIC APPLICATIONS 2021  /  16

THE GLOBAL PV INSTALLED CAPACITY / CONTINUED 

SOURCE IEA PVPS & OTHERS.

FIGURE 2.8: 2017-2020 GROWTH PER REGION
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FIGURE 2.7: EVOLUTION OF REGIONAL PV INSTALLATIONS 
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PV in Europe
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• Generated amount of electricity? CALCULATED!

• Conventional power plants: properly monitored (~7000)
• JRC Open Power Plants Database (JRC-PPDB-OPEN)

• Wind/solar parks monitored (utility scale)
• Supervisory Control And Data Acquisition (SCADA)
• Measured yield determines subsidy!

• Residential PV monitored???



SCADA (example: 3E, Synaptic) 
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Residential monitoring (example: SMA) 
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Inverter with display Inverter with app



Residential monitoring (example: SolarLog) 
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connected to inverter



Residential monitoring (example: SolarCare) 
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Residential monitoring (example: PVOutput.org) 
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1900 systems
10.135 MWp
à 5.3 kWp 
system average

Web and app



 Task 1 Strategic PV Analysis and Outreach ± 2021 Snapshot of Global PV Markets    
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4. MARKET SEGMENTATION 
Preliminary data show that the utility-scale PV market slightly increased in absolute numbers 
compared to 2019. However, it relatively decreased in market share as the rooftop market 
increased more significantly. The rooftop market grew in 2020, mainly due to a strong push 
from Vietnam but also some growth in Australia, Germany and the United States.  

 

Source: IEA PVPS 

 

The market has also started to diversify in terms of other type of applications, with floating PV 
adding to utility-scale and BIPV starting to complement BAPV in the built environment. Other 
emerging segments such as agricultural PV are hardly visible yet. From a technology point of 
view, some evolutions have been notable, such as the start of bifacial PV development. PV 
integrated in vehicles is showing the potential for further diversification of PV components, but 
its current market level remains too low to be considered in this publication. 

 

  

IEA-PVPS, Trends in Photovoltaic Applications 2021

contributed to the utility-scale market, distributed PV also increased 

significantly in 2020, with around 59 GW installed; with 15,5 GW from 

China alone. Remarkably, the distributed segment took off in the 

Middle East due to adequate policies in Israel and Jordan. 

Globally, centralized PV continued to represent 60% of the market in 

2020, mainly driven by China, the USA, and emerging PV markets. 

In the same trend as in previous years, 2020 saw again some new 

records in terms of PV electricity prices through extremely 

competitive tenders. Although renewed competitive tenders 

CHAPTER 2 PV MARKET DEVELOPMENT TRENDS
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EMERGING PV MARKET SEGMENTS

SOURCE IEA PVPS & OTHERS.

FIGURE 2.13: ANNUAL SHARE OF CENTRALIZED AND DISTRIBUTED GRID-CONNECTED INSTALLATIONS 2010 - 2020
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FIGURE 2.14: CUMULATIVE SHARE OF GRID CONNECTED PV INSTALLATIONS 2010 - 2020

0

%

2018 2019 20202010 2011 2012 2013 2014 2015 2016 2017

Grid-connected centralized

Grid-connected distributed

20

40

60

80

100

In the first years of this century, Europe led PV development for 
years and represented more than 70% of the global cumulative PV 
market until 2012. From 2013 to 2017, European PV installations 
decreased while there has been rapid growth in the rest of the 
world, mainly in Asia and the Americas. The fast development of 
PV led to a strong opposition from many stakeholders from the 
energy sector, and the market declined rapidly in several 
countries. In addition, several countries implemented measures 
aiming at decreasing the cost of PV installations for the community 
by retroactively changing the remuneration levels or by adding 
taxes. This phenomenon happened mostly in Europe, where the 
fast development of PV took place before other regions of the 
world: Spain, Italy, Czech Republic, Belgium, France and others 
took some measures with a consequent impact on the confidence 
of developers and prosumers.  

But since then, the situation improved gradually in most countries 
and PV installations rose in Europe. This was the case again in 
2020: With an improved competitiveness and new policies, 
Europe saw its PV market growing again in 2020, with 24 GW 
installed, which accounted for 16% of the global PV market. 
European countries had 167 GW of cumulative PV capacity by the 
end of 2020, the second largest capacity globally. It is important to 
distinguish the European Union and its countries, which benefit 
from a common regulatory framework for part of the energy 
market, and other European countries which have their own 
energy regulations and are not part of the European Union. 

Most European countries used Feed-in Tariffs schemes to start 

developing PV and moved in the last years to self-consumption (or 

variants) for distributed PV while tenders became the standard for 

utility-scale PV. These trends are not typical to Europe, but self-

consumption developed faster here than in other locations. 

Collective and delocalized self-consumption are developing in 

several countries. BIPV has been incentivized more than in any 

other location in the past but remains a niche market after several 

GW of installations. Simplified BIPV seems to develop well in some 

countries. Merchant utility-scale PV developed in Spain and 

Germany and could lead to a significant market share in a near 

future. Portugal saw competitive tenders below a reasonable price 

in 2020, sign of speculation on grid connections. 

 

EUROPEAN UNION 

Policy Framework 

In December 2018, the revised European Renewable Energy 

Directive (RED II) set a 32% renewable energy target by 2030, up 

from 20% in 2020 [1]. In 2019 the European Green Deal was 

introduced, an action plan to boost the efficient use of resources 

by moving to a clean, circular economy and to restore biodiversity 

and reduce pollution. A pillar of the European Green Deal is a 

commitment to be climate neutral by 2050. In September 2020, 

the European Commission proposed raising the 2030 climate 

targets aiming at a 55% GHG reduction by 2030. The 
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EUROPE

SOURCE IEA PVPS & OTHERS.

FIGURE 2.19: EVOLUTION OF PV INSTALLATIONS IN EUROPE PER SEGMENT
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For half of PV capacity monitoring data is not available
or difficult to access

So, is this reliable????

PV contribution to electricity demand in 2020



PV in Europe
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• CALCULATED contribution of PV to electricity is a few 
percent, so TODAY data unavailability is a minor issue

• With PV as major contributor (backbone!) to 100% 
renewable society, data unavailability is a major issue, and 
unacceptable

• Security of supply is at stake, loss of load probability (LOLP) 
less than x (3?) hours per year
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Global Energy System based on 100% Renewable Energy 
Key Findings  

 
II 

 

Solar PV and wind energy lead the transition 

Primary energy supply in the 100% renewable energy system will be covered by a mix of sources, with solar PV 
generating 69%, followed by wind energy (18%), biomass and waste (6%), hydro (3%) and geothermal energy (2%) 
by 2050 (see Figure KF-2). Wind energy and solar PV make up 96% of total electricity, and approximately 88% of the 
total energy supply, which will have a synergetic balancing effect.  

 

100% renewable energy is cheaper than the current energy system. 

x The levelised cost of energy for a fully sustainable global energy system will be slightly cheaper than for the 
current system, reducing from approximately 54 €/MWh in 2015 to 53 €/MWh by 2050 (see Figure KF-3). When 
taking into account negative externalities of the current system, which have been cited in numerous other 
contemporary studies, the 100% renewable global energy system is a substantially cheaper option.  

x A 100% renewable energy system provides a win-win for the global community at large; with both economical 
and environmental benefits. 

x Major regions can realise a substantial cost reduction including Middle East and North Africa (-31%), North 
America (-22%), South America (-34%), and Europe (-15%), while achieving zero emissions by 2050. The levelised 
cost of electricity decreases substantially from around 78 €/MWh in 2015 to around 53 €/MWh by 2050, while the 
levelised cost of heat increases from around 39 €/MWh in 2015 to around 49 €/MWh by 2050.  

x It can be concluded from the results that the transition eliminates international energy dependencies and helps 
to solve energy-related conflicts. 

x A trend develops where the levelised cost of energy becomes increasingly dominated by capital costs, as fuel 
costs lose importance through the transition period.  

x Investments in the energy sector increase through the transition and are spread across a variety of technologies 
with major investments in solar PV, wind energy, batteries, heat pumps, and synthetic fuel conversion (see 
Figure KF-3).  

The total annual transport energy costs decrease through the transition period from around 2.09 trillion euros in 2015 
to about 1.9 trillion euros by 2050. Final transport passenger costs decline for road transport, whereas there is a 
marginal increase in costs for marine and aviation transport. Final transport freight costs decline in case of road, 
remain stable for rail and marine and increase slightly for aviation. 

Figure KF-2: Shares of primary energy supply in 2015 and 2050. 
 

2050: A 100% global renewable energy 
system with ZERO CO2 emission

63.4 TW PV
8 TW wind
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automatically leads to a reduction in the primary energy consumption
of the electricity sector when switching to wind, solar and hydro, be-
cause they have no conversion losses (by this definition).

In the heating sector, fossil-fuelled boilers dominate today's heating
provision; here, primary energy again corresponds to the heating value
of the fuels. For heat pumps, the heat taken from the environment is
sometimes counted as primary energy [95,96], sometimes not [5]; in
the latter case the reduction in primary energy consumption is 60–75%
[97], depending on the location and technology, if wind, solar and
hydro power are used. Cogeneration of heat and power will also reduce
primary energy consumption. In addition, district heating can be used
to recycle low-temperature heat that would otherwise be lost, such as
surplus heat from industrial processes [98–100]. For biomass, solar
thermal heating and resistive electric heating from renewables there is
no significant reduction in primary energy compared to fossil-fuelled
boilers.

In transport, the energy losses in an internal combustion engine
mean that switching to more efficient electric vehicles running on
electricity from wind, solar and hydro will reduce primary energy
consumption by 70% or more [46] for the same service.

If statistics from the European Union in 2015 [101] are taken as an
example, taking the steps outlined in Fig. 1 would reduce total primary
energy consumption by 49%2 without any change in the delivered en-
ergy services. (Final energy consumption would also drop by 33%.) A
reduction of total primary energy of 49% would allow a near doubling
of energy service provision before primary energy consumption started
to increase. This is even before efficiency measures and the consump-
tion from fuel processing are taken into account.

The primary energy accounting of different energy sources pre-
sented in this example is already enough to explain the discrepancies
between the scenarios plotted in Fig. 1 of [73], where the median of
non-NGO global primary energy consumption increases by around 50%
between 2015 and 2050, while the NGOs Greenpeace and WWF see
light reductions. As an example of a non-NGO projection with high
primary energy demand, many IPCC scenarios with reduced greenhouse

gas emissions rely on bioenergy, nuclear and carbon capture from
combustion [102], whereas the NGOs Greenpeace [6] and WWF [5]
have high shares of wind and solar. The IPCC scenarios see less in-
vestment in wind and solar because of conservative cost assumptions,
with some assumptions for solar PV that are 2–4 times below current
projections [103,34]; with improved assumptions, some authors cal-
culate that PV could dominate global electricity by 2050 with a share of
30–50% [104]. Another study of 100% renewable energy across all
energy sectors in Europe [22] sees a 10% drop in primary energy supply
compared to a business-as-usual scenario for 2050, with bigger reduc-
tions if synthetic fuels for industry are excluded.

The authors chose to concentrate on primary energy consumption,
but for renewables, as argued above, it can be a misleading metric (see
also the discussion in [96]). The definitions of both primary and final
energy are suited for a world based on fossil fuels. What really matters
is meeting people's energy needs (the blue boxes in Fig. 1) while also
reducing greenhouse gas emissions.

Next we address energy efficiency that goes beyond just switching
fuel source. There is plenty of scope to maintain living standards while
reducing energy consumption: improved building insulation and design
to reduce heating and cooling demand, more efficient electronic de-
vices, efficient processes in industry, better urban design to lower
transport demand, more public transport and reductions in the highest-
emission behaviour. These efficiency measures are feasible, but it is not
clear that they will all be socio-economically viable.

For example, in a study for a 100% renewable German energy
system (including heating and transport) [30] scenarios were con-
sidered where space heating demand is reduced by between 30% and
60% using different retrofitting measures. Another study for cost-op-
timal 100% renewables in Germany [105] shows similar reductions in
primary energy in the heating sector from efficiency measures and the
uptake of cogeneration and heat pumps.

The third point concerns the upstream costs of conventional fuels. It
was recently estimated that 12.6% of all end-use energy worldwide is
used to mine, transport and refine fossil fuels and uranium [36]; re-
newable scenarios avoid this fuel-related consumption.

One final, critical point: even if future demand is higher than ex-
pected, this does not mean that 100% renewable scenarios are in-
feasible. As discussed in Section 3.6, the global potential for renewable
generation is several factors higher than any demand forecasts. There is
plenty of room for error if forecasts prove to underestimate demand
growth: an investigation into the United States Energy Information

Fig. 1. Primary energy consumption (grey and green) versus useful energy services (blue) in today's versus tomorrow's energy system. (Reproduced with permission
from [93], page 86; based on [94]) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).

2 This would involve switching from thermal power plants (average efficiency 35%
[101]) to wind and solar generators for all electricity, using heat pumps (average coef-
ficient of performance of 3) for space and water heating, and using electricity instead of
internal combustion in road vehicles (reducing final energy consumption here by a factor
of 3.5 [46]). No reduction in primary energy is assumed for remaining energy sectors
(non-electric industrial demand, aviation and shipping).

T.W. Brown et al. 5HQHZDEOH�DQG�6XVWDLQDEOH�(QHUJ\�5HYLHZV��������������²���

���

Brown et al, RSER 2018

Renewable electricity is backbone
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20 Energy Transition Modeling Towards Sustainable Power Sector 

Christian BreyerŹ Christian.Breyer@lut.fi 

Energy Transition Modeling: Europe 

Key insights: 

• energy system transition model for 145 regions forming 92 countries 

• results here are for Europe (in limits of IS, PT, TR, UA, EE, FI) 

• LCOE decline on energy system level driven by wind/PV + battery 

• beyond 2030 solar PV grows much more than wind energy 

• wind and PV + battery finally run the system more and more 

• solar PV supply share in 2050 at about 45% as least cost 

• capacities in 2050: solar PV of ~2000 GWp and wind of ~600 GW 

• LCOE of 54 ½/MWh are further reduced to 46 ½/MWh for 2050 cost 
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Christian BreyerŹ Christian.Breyer@lut.fi 

Energy Transition Modeling: Europe 

Key insights: 

• energy system transition model for 145 regions forming 92 countries 

• results here are for Europe (in limits of IS, PT, TR, UA, EE, FI) 

• LCOE decline on energy system level driven by wind/PV + battery 

• beyond 2030 solar PV grows much more than wind energy 

• wind and PV + battery finally run the system more and more 

• solar PV supply share in 2050 at about 45% as least cost 

• capacities in 2050: solar PV of ~2000 GWp and wind of ~600 GW 

• LCOE of 54 ½/MWh are further reduced to 46 ½/MWh for 2050 cost 

21 Energy Transition Modeling Towards Sustainable Power Sector 
Christian BreyerŹ Christian.Breyer@lut.fi 

Energy Transition Modeling: Europe 

Energy Transition Modeling: Europe  
(Breyer, Solar Power Europe)

Renewable Europe 
How To Make Europe’s Energy System  
Climate-Neutral Before 2050

100%
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• Inventory of all PV installations in all the regions of the 
world à installed capacity

• Database of annual (monthly/daily/hourly/quarterly) 
energy yield à contribution to electricity demand

• Realtime power production required for grid management 
(HV/MV/LV, TSO/DSO)



Data availability – Utility Scale PV
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• Example Netherlands
• Utility scale
• CertiQ issues Guarantees/Certificates of Origin for 

renewable electricity, and registers PV systems >15 kWp
for receiving subsidy (SDE++) per kWh generated

• A calibrated energy sensor is 
required to be installed per system

• Annual yield is reported



Data availability – Residential PV
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• Residential scale Netherlands
• By law, every PV system owner must register PV system 

(or his/her installer), however this is not enforced
• National register CERES, also includes wind, biomass, 

small hydro)
• NO information on tilt/azimuth is provided
• Statistics Netherlands (CBS) collects all data: only about 

80% of residential systems is actually registered



Data availability – Residential PV
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• Residential scale Netherlands
• Smart meter collects data, demand and net energy fed 

back into the grid: self consumption is subtracted from PV 
generation

• Smart meter data is private (GPDR)
• Contribution to electricity demand can only be 

ESTIMATED



Contribution to electricity demand -NL
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• Estimation procedure Statistics Netherlands (CBS)
• Installed capacity on 1 January and 31 December of year YY
• Calculate average addition in year YY
• Multiply with average agreed annual yield of 875 kWh/kWp

• For 2021: (14+10)/2 x 875 = 10 TWh
• About 9% of present Dutch electricity demand



Contribution to electricity demand -NL
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• Revised procedure suggested 
• Use monthly average capacity, per municipality/province
• Use meteorological data to calculate monthly yield, spatially 

resolved
• Sum to get national estimate

• Calculations to be validated, using a representative set of 
monitored PV systems

• CRUCIAL: are the PV systems running as expected?
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Annual yield (2020) Yield increase
compared to 1981-2020 average

CALCULATED
assumptions: south, 37o tilt

no malfunctions/shade



Statistical analysis of monitoring
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• Use PVoutput.org systems in the Netherlands, 50 MWp
• Meta data (static, time independent): 2016 and 2017

• power: number of panels (Np ), panel power (Pp ), total system size (P), 
inverter size (Pi) and number of inverters (Ni). 

• geometry: azimuth (φ) and tilt (θ)

• brand: panel and inverter brands
• location: Postal code 4 (pc4) area , longitude (l) and latitude (b)

• time: installation date of the system (d)
• Energy data:  

• instantaneous (Yinst) and cumulative (Ycum ), with time stamp

Laevens et al., Solar Energy 228 (2021) 12–26
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As mentioned in the Introduction, Statistics Netherlands has 
administrative data on P and monthly energy production (Ym) from large 
PV systems (e.g. solar farms) from the government–led certification 
process for renewable energy as executed by CertiQ (CertiQ, 2020), a 
100% subsidiary of TenneT, the European electricity transmission sys-
tem operator for the Netherlands (TenneT, 2019). We do not use the 
CertiQ measurement data because our model is aimed at computing Yd 
(rather than Ym), as a function of different PV system parameters such as 
ϕ, θ and ∊, all of which we also do not know for the CertiQ systems. 

3. Methods 

We outline our new method for determining Yd and Ya for the 
Netherlands in Section 3.1. An overview, in formal notation, is presented 
in Sections 3.1.1, with the different aspects of the method expanded 
upon in Sections 3.1.2. In Section 3.2, we describe our method to convert 
the national estimates into regional estimates. 

3.1. National solar energy production 

3.1.1. Procedure 
Our main aim is to calculate pd(Y): the distribution of Yd emanating 

from the population of PV systems in the Netherlands, which we can 
aggregate to Ya. The relationship between these three quantities are 
defined by Eqs. 2 and 3: 

Yd =
∫

pd(Y)dY, (2)  

Ya =
∑d=365

d=1
Yd. (3)  

Eq. (3) may be re–expressed as a function of the weather and more 
specifically H, which is denoted by Eq. (4). De–constructing pd(Y,H)4 

into two separate functions pd(Y|H) and pd(H) and integrating this over 
the number of PV systems in the database (Nd) gives Eq. (5): 

pd(Y) =
∫

pd(Y,H)dH, (4)  

pd(Y) =
∫ Nd

pd(Y|H)pd(H)dH =
∫ Nd

pd(Ys|H)pd(P)pd(H)dH, (5)  

where in the final step, we have re–expressed pd(Y) in terms of pd(Ys)
and pd(P), the specific yield and power of the systems respectively. 
Evaluating pd(H) is trivial: the distribution of H of all database locations 
is obtained by matching each database system to its nearest irradiance 
grid cell. Evaluating pd(Ys|H) is more complex since we construct this 
with our non–probability sample PVOutput, which we use as a proxy 
for the population. We can evaluate pd(Ys|H) as the marginal likelihood, 
in terms of the PV system characteristics x = {ϕ,θ,∊}, given by Eq. (6): 

pd(Ys|H) =
∫

pd(Ys|x)pd(x|H)dx. (6)  

By selecting a certain prior pd(x|H), we obtain a realisation of the 
PVOutput data: pd(Ys|H), satisfying the aforementioned prior. Since for 
an observed value of H, there is a corresponding spread in Ys, there is no 
way of knowing which Ys to allocate to a database location. We therefore 
randomly draw all the systems in the database and assign them a value 
for Ys, such that the ensemble of Ys values assigned to the database lo-
cations, respects the proportions observed in PVOutput. This procedure 
of Monte Carlo sampling may be repeated a number of times, allowing us 
to repeatedly evaluate Eq. (5) and, in turn, Eq. (2). The result of this is an 
estimate of the mean energy production (μYd

) and standard deviation 
(σYd ). 

Our calculations for Eq. (5) will strongly depend on the choices we 
make for the prior, relating to the distribution of x = {ϕ,θ,∊}, in Eq. (6). 
By exploring various scenarios, i.e. different choices of our prior, we can 
explore the margins of our estimates. We will further expand these ideas 
and equations in Sections 3.1.2 and 4. 

3.1.2. Evaluating Yd with Monte Carlo sampling 
We have seen in Section 3.1.1 that our method relies on evaluating 

Eq. (5). Before being able to do so, it is necessary to construct the 
functions pd(Ys|H) and pd(H). Both of these are obtained by linking 
either PVOutput locations, in the case of pd(Ys|H), or database PV 
systems, in the case of pd(H), to Hd grid cells, following a simple pro-
cedure set out in Appendix B. Once linked, pd(Ys|H) may be easily 
constructed according to the following procedure: for any given day 
d and PVOutput location i, we can use the cumulative energy mea-
surement Ycum (or Yd in other words) to obtain Ys,d, according to: Ys,d i =
Yd,i/Pi. The system sizes are those quoted in the PVOutput metadata. 
We refer the reader to Appendix A for a short explanation on how we 
compute Hd from the quarter hourly G values. Fig. 2 shows two examples 

Fig. 2. Hd vs. Ys,d for all PVOutput systems on 13/06/2016 (left) and 13/09/2016 (right).  

4 Please note that when we write pd(Y,H) or any other example with pd, the 
subscript is also implied for the quantities in the function i.e. Yd and Hd. We 
drop these subscripts to avoid cluttering. 

B.P.M. Laevens et al.                                                                                                                                                                                                                           

Distribution of daily yield vs daily irradiance sum
13 June 2016 13 September 2016

sunnypartly overcast

Laevens et al., Solar Energy 228 (2021) 12–26
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Distribution of orientation, tilt, inverter loading ratio
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4.1.2. Re–sampling H 
Now we must account for one final variable: pd(l,b). With the aim of 

making pd(Ys|H) as accurate as possible, the geographic number density 
of systems in PVOutput should match the density observed in the 
database. If, for example, 40% of the PVOutput systems, used to 
construct pd(Ys|H), lie in the West of the country on day d, while in the 
database this is 20%, then our estimation of Yd could end up being too 
optimistic or pessimistic depending on the weather on that day. 

In practice, it’s very difficult to apply integer weighting to pd(l, b), 
since one would have to agree on bin sizes for (l,b). Such aggregation bin 
sizes would have to change daily depending on the weather (or H): on a 
perfectly sunny day over the whole country (e.g. 13 September in Fig. 2), 
it could make sense to define one bin for (l, b) encompassing the whole 
country, whereas on a day with a lot of local weather effects, a different 
aggregation level would be necessary. Since the sample size of 
PVOutput is too small in any case to split it up into smaller portions, we 
can use a proxy for (l, b), which is H itself. We can apply integer 
weighting to H observed in PVOutput such that its distribution satisfies 
the distribution in the database D, given by Eq. (18)): 

pd(H) ∼ Dd(H), where 1⩽d⩽365. (18)  

4.1.3. Integer Weighting: Discussion 
Table 1 shows the minima, maxima and bin sizes for ϕ, θ, ∊ and H. It 

should be noted that bins for ∊ do not correspond to anything physically: 
0 means ∊ = 1, −1 means ∊ > 1 and 1 that ∊ < 1. Our choice for the 
other bin sizes is motivated by practical limitations: Δϕ = 45◦ because 
PVOutput only allows the input of four cardinal and four intercardinal 
directions. We choose Δθ = 15◦ such that we retain a statistically sig-
nificant number (∼ 100−200) of PV systems per bin. We choose ΔH =
0.5kWh/m2 since this is what we already decided earlier on in Section 

3.4 when combining Hd and Yd (see Fig. 2). 
We draw the reader’s attention to the fact that our earlier decision 

for integer weighting means we cannot exactly satisfy Eqs. 13 and 18. 
This is why we allow for a leeway of 1.5% when trying to satisfy these 
equations. The choice for this number is a pragmatic one: it is lenient 
enough to allow us to efficiently implement our procedure, but strict 
enough that the equations are almost exactly satisfied. Fig. 4 shows the 
effect of integer weighting: On some days, the overall number of systems 
increases while on most days the set decreases. Fig. 5 shows p1/6/16(ϕ, θ,∊) and p1/6/16(H), which have been re–sampled so they satisfy Eqs. 13 
and 18. 

As stated above, the procedure of integer weighting has the conse-
quence that the two constraints in practice will never both be satisfied 
exactly. By making these constraints ‘softer’, i.e. allowing an interval 
around an exact match, they become probabilistic in nature, so that it is 
advisable to generate multiple realisations of the distributions, all within 
that small allowed interval. Given that each realisation is itself a sample 
of between 800 and 1400 instances, a modest number of 50 realisations 
of the distributions is sufficient to ensure that an average over that 
ensemble of distributions can be used for this analysis. 

4.2. Choosing different priors 

We now return to our second refinement. In Eq. (6) of Section 3.1.1, 
we saw that it is possible to evaluate p(Ys|H) as the marginal likelihood, 
with a prior p(x|H). We can now decide to make different selections for 
p(x|H) and propagate these through in our calculations. For example, 
what will Yd and Ya be if only all South–facing systems are selected? 
Experimenting with different choices of p(x|H) will give us a sense of 
how much our current estimates at SN could vary depending on what the 
true specifics are of the Dutch PV system population. 

4.3. Schematic summary of method 

We summarise our methodological framework from Sections 3 and 4 
for the reader:  

1. Make a choice for the prior p(x|H), e.g. all systems face South.  
2. Select all systems in PVOutput on 1 January that satisfy p(x|H). 

Table 1 
Minima, maxima and bin sizes for the four different parameters: ϕ, θ, ∊ and H.  

parameter min max Δ parameter  

ϕ  0◦ 360◦ 45◦

θ  0◦ 90◦ 15◦∊  −1 1 1 
H min(H) max(H) 0.5kWh/m2   

Fig. 5. p1/6/16(ϕ, θ, ∊) and p1/6/16(H), integer weighted w.r.t. p1/1/16(ϕ, θ, ∊) and p1/1/16(H), according to scenario 1. Integer weighting is performed by satisfying Eq. 
(13) (ϕ, θ and Np) and Eq. (18) (H). 

B.P.M. Laevens et al.                                                                                                                                                                                                                           
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Pi<P      Pi=P      Pi>P
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of the number density of reliable5 PVOutput systems in the Hd −Ys,d 

plane. The left panel (13/06/2016) shows a day with large variations in 
Hd and Ys,d, whereas the right panel (13/09/2016) shows an excep-
tionally clear day over the whole country, nevertheless producing a wide 
spread in Ys,d, due to different efficiencies of PVOutput systems which 
are a function of parameters such as ϕ and θ. 

With all the necessary elements in hand, we evaluate Eq. (5) by 
re–writing the integral as a sum. This is more intuitive in light of the 
graphical representation of pd(Ys|H) we discussed in Fig. 2. We can 
define that for a number of irradiation (NHd ) and energy production 
(NYd ) bins, the probabilities of Ys,d being observed must sum to one (Eq. 
(7)). Using pd(H), we compute the number of systems Nl per bin l, which 
must satisfy Eq. (8), where Nd is the number of systems in the database. 
We can use this information to compute the number of systems per bin 
Nkl (Eq. (9)). Keeping track of which systems fall in bin l, we can perform 
a random sample of Nkl systems from a total of Nl systems for bin k, l and 
insert this into Eq. (10), where Pm is the system power of one system in 
that Nkl sample of systems. 

∑NYd

k=1

∑NHd

l=1
pkl(Ys,d) = 1, (7)  

Nd =
∑NHd

l=1
Nl, (8)  

Nkl =
pkl

∑NYd

k=1
pkl

Nl

Nd
, (9)  

Yd =
∑NYd

k=1

∑NHd

l=1
NklYs kl

∑Nkl

m=1
Pm. (10)  

We can perform Monte Carlo sampling by repeatedly evaluating Eq. (10), 
resulting in a probability density function, indicating the mean (μYd

) and 
standard deviation (σYd ) of our estimates for Yd. Fig. 3 shows what these 
functions look like for four different days (Spring and Autumn equi-
noxes, Summer and Winter solstices). These functions were constructed 
by performing the Monte Carlo sampling 500 different times, allowing for 
uncertainty margins to be quantified. 

Our decision to bin the data in 0.5kWh/m2x0.5kWh/kWp bins, as can 
be seen in Fig. 2 is motivated by practical concerns. We want to produce 
a simple, easy and intuitive model allowing us to easily read off pkl(Ys). 
The size of our bins is chosen in such a way that the resolution is high 
enough such that meaningful differences in Ys may be discerned, while 
at the same time keeping the resolution low enough, increasing the 
chances that each value of H at a location in the database is also 
observed in pd(Ys|H) from PVOutput. For those systems which have a 
value H that is not observed in pd(Ys|H), we use our estimate of Ys,d for 
all the present systems and multiply this by the systems’ P. We note that 
the fraction of such systems is always lower than 1%. 

3.2. Regional solar energy production 

3.2.1. Procedure 
Estimating regional solar energy production is a lot less work now 

that we have set out the framework in Section 3.1. Up until now we 
grouped database systems together in 0.5kWh/m2 bin sizes such that we 
could construct pd(Ys|H) and hence estimate Yd and Ya (see Fig. 2). This 
of course means that many systems were placed together in bins and 
assigned the same value Ys, even though their observed H could differ by 
as much as the size of the bin, i.e. 0.5kWh/m2. By returning to each 
database location, we can re–determine Yd using the exact measurement 
of Hd. 

First we convert μYd 
into μYs,d

, using the total system size of the PV 
systems population in the database on that day. Then, we make the 
assumption that the mean specific yield μYs,d 

must correspond to the 
mean irradiation (μHd

) observed on that day in the Netherlands. 
Therefore, for a system at a location j, we can read off once again Hd,j and 

Fig. 3. Distributions of Yd for all database PV systems (according to scenario 1) on the Summer and Winter solstices and the Spring and Autumn equinoxes. These 
energy production distributions are calculated using Monte Carlo sampling, using Eqs. (7)–(10). 

5 For an explanation on what reliable means, we refer the reader to Appendix 
A for further reading regarding data cleaning. 

B.P.M. Laevens et al.                                                                                                                                                                                                                           
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Geographical distribution of annual yield
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that a bias is possible due to the choices we made when we cleaned the 
data. 

Now we turn to the underlying assumptions that have been made 
throughout this paper w.r.t. Monte Carlo sampling. This type of sampling 
assumes that observations are independently and identically distributed 
(i.i.d.). It is possible that on the micro level i.i.d. is not fully satisfied due 
to correlations that can arise e.g. in a street with terraced houses facing 
the same way, it is probable that Ys,d is quite similar for all of the PV 
systems (assuming ∊ and other factors are negligible). Our method does 
not take these correlations into account. We would argue that the degree 
to which such correlations matter, depends on what aggregation levels 
one selects for Yd. Since it is not our goal to present results for Yd on a 
micro–level, we argue that this effect must average out on a national 
level, where hundreds of thousands of database PV systems are gener-
ating energy. In this regime, p(Ys|H) and p(H) will be the far more 
dominant factors when determining μYd

. If, for example, we are missing 
an important subpopulation of PV systems in p(Ys|H), this will have a 
rather larger impact. We briefly return to i.i.d. in Section 5.2, when 
discussing our regional results. 

5.1.1. Comparison with Statistics Netherlands figures 
Our results for 2016 are consistently higher than those currently 

measured by SN: 877⩽Ys,2016⩽946kWh/kWp and 
1605⩽Y2016⩽1697GWh. We remind the reader that these should be 

contrasted with SN’s estimate of Ys,2016 = 875kWh/kWp and Y2016 =
1602 GWh (SN, 2020). The result is even more significant, given that the 
lower range of 877kWh/kWp corresponds to an unrealistic set up: no 
South–facing panels (scenario 6). The picture is more mixed for 2017: 
838⩽ Ys,2017⩽899kWh/kWp and 2059⩽Y2016⩽2209 GWh, with Ys,a lying 
somewhere within our estimated range. 

5.1.2. Comparison with CertiQ and SolarCare 
In Section 2.3 we mentioned that SN also has Ym measurements for ∼

1800 large PV systems (CertiQ). Unfortunately the specifics such as ϕ, θ 
and ∊ are unknown. Indeed this is the reason we chose not to include the 
data source in our method, preferring to use it as a form of validation. 
Table 3 shows our calculations for Ym/Ya for PVOutput (according to 
scenario 1) and CertiQ. While the Winter months seem to be spot on, 
there are small discrepancies for the Summer months, with PVOutput 
showing lower Ym, where June and September have the most striking 
offset. We see two possible explanations for this. Firstly, the configura-
tion of the large PV systems may be more optimal (e.g. ϕ), thus deliv-
ering better Ym in the Summer months. Secondly, panel temperatures 
are likely to be higher on roofs than in fields, resulting in lower con-
version efficiencies (typically 5–10% lower), and thus Ym (Drews et al., 
2007). Finally, we note that Ys,2016 = 904kWh/kWp, which we obtain 
from CertiQ data, is in close agreement with PVOutput’s scenario 1: 
Ys,2016 = 910kWh/kWp. 

Fig. 8. The performance ratio (Ys,m/Hm) for 2016 (blue) and 2017 (green). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 9. Ys,2016 (left) and Ys,2017 (right) per Dutch municipality according to scenario 2.  

B.P.M. Laevens et al.                                                                                                                                                                                                                           

Yield: 877 − 946 kWh/kWp Yield: 838 − 899 kWh/kWp

Used yield by CBS: 875 kWh/kWp
Laevens et al., Solar Energy 228 (2021) 12–26



Monitoring - webscraping data
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• Market is introducing web tools for 
system owners to share monitor data, 
e.g., SolarLog

• This data can (could…) be obtained 
by web scraping techniques

• “What you see, is what you can extract”
• Python scripts developed to mimic 

human navigation

Kausika et al., Energies 2018, 11, 1330.



Monitoring - webscraping data
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• Data from systems in the Netherlands, Germany,  United 
Kingdom, France, Italy, Greece 

• Daily AC and DC yields and PV system details (orientation, 
tilt, size)

Kausika et al., Energies 2018, 11, 1330.

54% < 10 kWp
1.7% > 50 kWp

c-Si 45.8%
p-Si 44%
CdTe 2.9%
CIS 1.4%
a-Si 1%



Netherlands

Belgium

Germany

France

Italy 

Annual yield 2014

1000 kWh/kWp

Kausika et al., Energies 2018, 11, 1330.
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Yield/GHI
NL: increases
GER: slightly decreases

Scale yield axis is 0.75 times scale irradiation axis

Well correlated annual yields and GHI

Kausika et al., Energies 2018, 11, 1330.



GIS mapping of yield 2014

Kausika et al., Energies 2018, 11, 1330.
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Moving the colors Color coding allows to find 
underperforming systems

Move through colors to 
visualize them

Movie
Start: all systems
Then, from low to high yield

Higher yield in south due to 
higher irradiation



Monitoring – global study

43

• Worldwide study using 2,802,797 PV systems located in 
Europe, USA, Japan and Australia, representing a total 
capacity of 59 GWp

• Various data sources combined: PVoutput.org, solar-log, 
sonnenertrag, openpv.nrel.gov, jyuri.jp, 
bundesnetzagentur.de, bdpv.fr

• Data records: installed capacity (100%), valid tilt/azimuth 
(11%), location (97%), specific annual yield (70%)

Killinger et al., Solar Energy 143 (2017) 120–131 
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systems ⩽25 kWp systems >25 kWp
mostly roofs                                     open fields

Actual tilt of systems

Both the impact of system size and the geographical influence can
be studied in respect to the tilt angle of systems in Figs. 3 and 4. All
regions show a tendency towards smaller tilt angles for system sizes>25 kWp. Especially for systems ⩽25 kWp in Europe, the dependency
between latitude and tilt can be observed by an increasing tilt angle
from Italy to Denmark. However, it should be noted that the spatial
influence is not only limited to a pure geographical relationship; the
spatial impact depends on regulations and incentives which often occur
on a national level. The policy situation in France leads to a high
number of 3 kWp systems (see Leloux et al. (2012b) in Section 1.1). In
Germany, there are changing regulations and feed-in tariffs for systems>30 kWp resulting in an increase in the black line of the right plot in

Fig. 2. Furthermore, the UK had a higher feed-in tariff for systems ⩽ 4
kWp up until January 2016 and has since moved to ⩽ 10 kWp (ofgem,
2018). These are such examples of significant policy-specific regional
influence that can impact upon the characteristics of PV systems.

There are many opportunities as to how we sub-categorise the data
into clusters. Many of which could be explored in order to derive
meaningful information depending on the approach. Options include
separating by climatic region or grouping by policy similarities.
However with respect to the aforementioned aspects, a clustering at a
country level seems advisable for the following reasons: (1) National
regulations and incentives have a visually evident impact on the oc-
currence of different system sizes which may itself influence other

Fig. 2. The installed capacity and its relationship to the relative share of systems for different countries (left). The line width and colours vary to simplify the
differentiation. The cumulative installed capacity in case of Germany is shown in the right plot represented by the coloured line (colouration indicating the network
connection) whereas the black line represents the cumulative number of systems. The dashed line indicates 25 kWp, which is used to sub-categorise the data in
Section 3.2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Maps for Australia (top) and Europe (bottom). The left column shows systems ⩽25 kWp and the right column systems >25 kWp. Systems which do not report
tilt are in grey colour.

S. Killinger et al. 6RODU�(QHUJ\����������������²����
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Monitoring issues

46

• Large data sets show yields to be expected, however with 
distribution (due to tilt/azimuth only?)

• What is quality of data quality, data gaps, accuracy?
• Does a PV system degrade? 
• Performance ratio degradation method of choice for 

analysis à performance loss rate (PLR)
• Malfunction? Shading?



Performance Loss Rates of PV system
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Solar Energy 143 (2017) 120–131 
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Data quality assessments

48

10

PLR of PV systems – Input data quality

S. Lindig, Uncertainty in PV Performance                                     PhD Results, 3rd February 2021, Ljubljana, Slovenia

Letter Grade Outliers
[%]

Missing percentage 
[%]

Longest gap
[days]

A Below 10 Below 10 Below 15
B 10 to 20 10 to 25 15 to 30
C 20 to 30 25 to 40 30 to 90
D Above 30 Above 40 Above 90

Pass/fail criteria Time series > 24 months => PASS

Data quality grading

[1] S. Lindig et al., “International collaboration framework for the calculation of performance loss rates: data quality,
benchmarks and trends (towards a uniform methodology),” Progress in Photovoltaics, 2021.
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PLR of PV systems – Uniform calculation procedure?

S. Lindig, Uncertainty in PV Performance                                     PhD Results, 3rd February 2021, Ljubljana, Slovenia

Filtering methods (Metric & statistical model constant)

Filter 2 – statistical PR filter:
±2sd around instantaneous PR

Filter 1 –irradiance threshold filter: 
350 W/m² < ܩை < 850 W/m²

Raw data: ܩை vs Normalized power

[1] S. Lindig et al., “International collaboration framework for the calculation of performance loss rates: data quality,
benchmarks and trends (towards a uniform methodology),” Progress in Photovoltaics, 2021.
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Practical use of PLR – Application of MS-PL

S. Lindig, Uncertainty in PV Performance                                     PhD Results, 3rd February 2021, Ljubljana, Slovenia

Filter 1 - Threshold filter:
0.01* ܲ < ܲ < 1.02* ܲ

50 W/m² < ைܩ < 1200 W/m²
0.3 < ܴܲହ < 1.2

Performance Loss Rates of PV system

Performance loss rate: -0.4%/year



Effects of shading
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• On rooftops shading may be present, dormers, chimneys…
• No irradiance sensor, meteo data needed (satellite, local 

weather stations) à geospatial errors and plane of array 
irradiance errors (GHI à POA models)



Effects of shading
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• Power vs POA irradiance

irradiance sensor                       satellite and model
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Tsafarakis et al., Energies 2018, 11, 977



Effects of shading
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• Use DBSCAN algorithm to cluster inliers and outliers

Reference Yield (Yr) [hours]
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Tsafarakis et al., Energies 2018, 11, 977



The shadow story
• Shadow detection, sunny day and cloudy day
• Identical panels, with power optimizers: peer-to-peer 

monitoring PV1 vs PV3, Monday PV1 vs PV3, Tuesday 

Energies 2019, 12, 1722 6 of 18

Table 1. The mandatory preprocessing of each data set. Yf and YR are calculated from Equations (1)
and (2). Pstudied and Pref are the rated capacity of the studied PV system and the reference system,
respectively. Yf,studied and Yf,ref are the yields of the studied and reference system.

Data

Reference Data
GTI

Neighboring PV System

Same Capacity Di↵erent Capacity

Studied PV Yf Pstudied (DC or AC) Yf,studied
Reference data YR Pref (DC or AC) Yf,ref

2.4. Data Source

The proposed method was applied using data from the testing facility of SEAC (Solar Energy
Application Center, Eindhoven, the Netherlands). Data from two PV systems of the facility are used,
with identical panel structure (six panels in two rows, one front, one back, same tilt and orientation) and
different inverter technology [28,29]. In Figure 2, a photograph of the system is presented. The used
systems are the ones on the right-hand side, equipped with six micro inverters (265 W each) and the
system on the left, equipped with six power optimizers connected in parallel (boost DC/DC) and a central
inverter of 1.5 kW especially made for the power optimizer system. In front of each system a pole is placed
(same dimension for every system) in order to create an artificial shadow on the front rows of each system
during the day which is equal for all systems. Furthermore, DHI (diffuse horizontal irradiance), DNI
(direct normal irradiance), and GHI (global horizontal irradiance) measurements are available, measured
at Technical University Eindhoven, approximately 4.5 km from the testing facility and the GTI, in the
plane of array, through two pyranometers mounted next to the PV systems.

 

Figure 2. The experimental facility of SEAC.

3. Description of the Algorithm

In this chapter the algorithm is described and visualized for better understanding. As an example,
the production data of a shaded solar panel with power optimizer is used. The panel was shaded by a
pole in the morning and the pole was placed in front of the panel during two di↵erent periods, from
April 21 to May 6 and from August 8 to October 13. After October 18 the panel was shaded early in the
morning by the wall in front of the system (see Figure 2). As reference data, the panel with the highest
production from the unshaded panels in the back row is used.

Tsafarakis et al., Energies 2019, 12, 1722



The shadow story
• Use DBSCAN algorithm to cluster inliers

and outliers, data April to November

data-time plot à
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Tsafarakis et al., Energies 2019, 12, 1722



The shadow story
• Remove inliers, plot outliers as a function of time
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The shadow story
• Potential hours in which

shade may occur
• Further cluster analysis
à Final shadow story

• Calculation of yield loss:
PR (inliers): 87%
PR (all): 82%
à 6% annual loss

Tsafarakis et al., Energies 2019, 12, 1722



Summary

58

• PV will reach TWp level late Summer
• Reliable yield data from half of systems is not available

• Resort to statistical means/modeling in combination with 
measured meteo data

• Monitor representative systems covering a full country
• What is a representative system? Not necessarily a well-

performing system!?
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Best solution?

open data
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