A FREE ONLINE TOOL FOR THE SIMULATION OF COLLECTIVE SELF-CONSUMPTION IN BRUSSELS

Authors: Sarr B., Zhao Z., Leloux J., Hendrick P., Robledo J

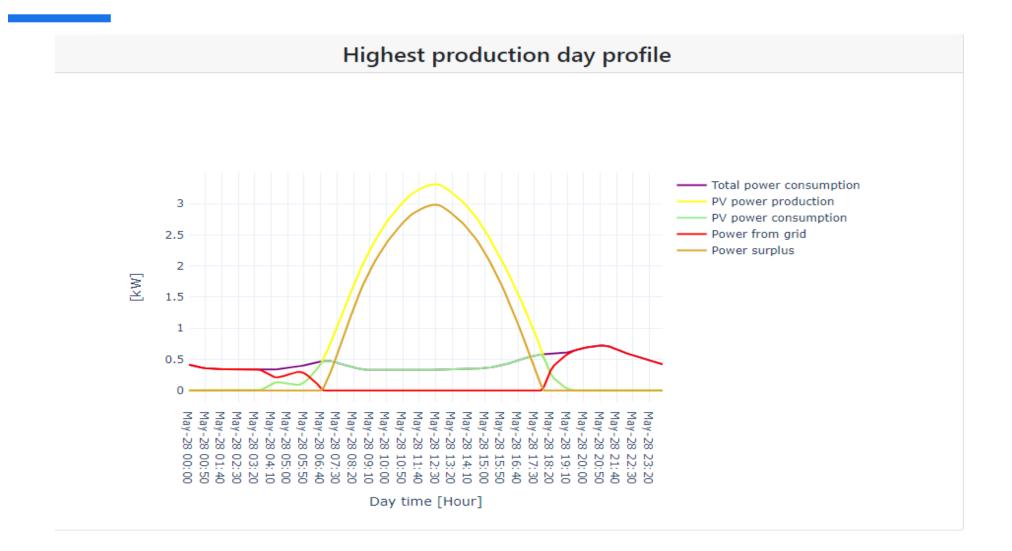
Why a need for such a tool?

- Mechanism in Belgium that rewarded the PV energy production through feed in tariffs
- Self-consumption is projected to become mainstream
- Simulate self-consumption and self-sufficiency ratio of a PV system or a group of systems in combination with one (or a group) of local consumption profile
- Combining different consumption profiles can improve particularly the SC to reduce cost of system for users.

Presentation of the web app

- Free online web-based simulation in collaboration with ULB
- Tool is composed of an interface to calculate self consumption a self sufficiency ratio and as well financial parameters are taken into consideration
- Help user make better informed decision
- Two functionalities:
 - Combining different types of buildings to help people choose the best combination with the builing consumption and PV production
 - **D** Prosumers: To decide on the optimum peak power for the PV installation and the corresponding returns on investment

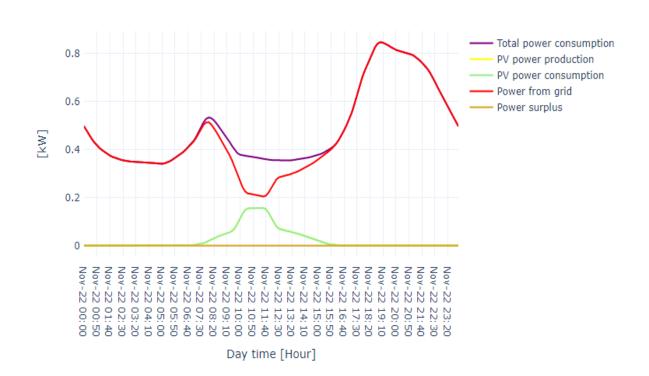
- Tool calculates self-consumption and self-sufficiency ratios on a 10 minutes basis
 - o Aggregation at monthly basis
 - o Aggregation at a yearly basis
- Regarding consumption profiles, synthetic profiles have been used corresponding to 17 different types of buildings
- Regarding PV generations part, LuciSun uses its internal PV simulation models
- Economic calculations are based on the self consumtion and self-sufficiency ratios calculated and specific figures that correspond to situation in Belgium.


Some concepts in Layman's terms

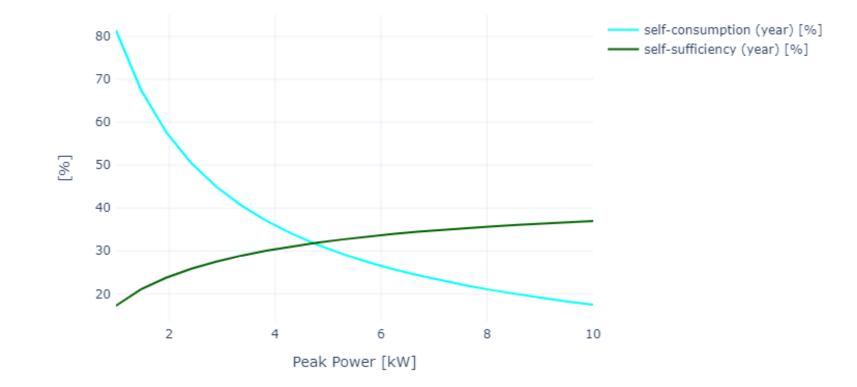
- PV Self-consumption ratio: Ratio of consumed PV power over Total PV produced
- Self-sufficiency: Ratio of consumed PV power over Total consumption over a period of time
- Net Present value: Amount of money one expect to make from an investment into today's money.

Prosumers simulation	Energy communities simulation	Info and Support

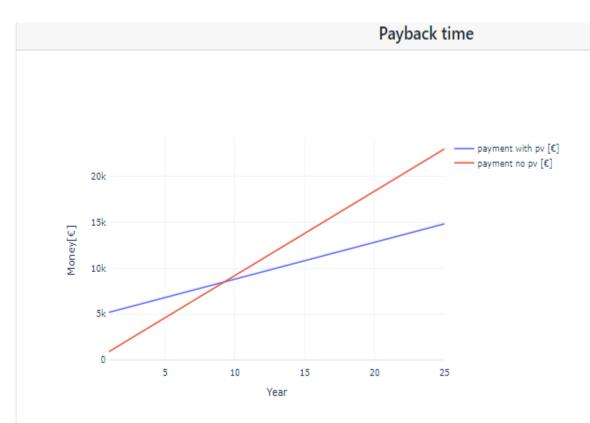
Energy consumer		Photovoltaic producer			Financials			
Energy consumer profile 没	Low residential	Photovoltaic system peak power 🕃	4 kWp		Photovoltaic installation cost 🕃	1200	€/kW	
Number of energy consumers 没	1	Photovoltaic system slope 没	30	•	Price of electricity from grid	0.23	€/kWh	
Annual energy consumption 没	4000 kWh	Photovoltaic system orientation 🤪	30		Discount rate 没	2	96	
		Number of photovoltaic systems	1		Photovoltaic system lifetime 😧	25	years	
					Price of photovoltaic energy surplus 🕄	0.10	€/kWh	
Results analysis								

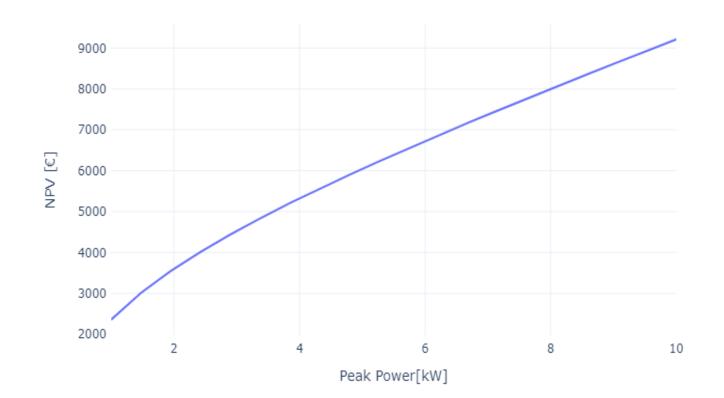

Run simulatio

Typical duck curve* can be seen:


Timing imbalance between peak demand and renewable energy production

Lowest production day profile




Yearly integrated self sufficiency and selfconsumption vs Peak power of PV installation

Cost of having a PV system Vs Cost of no PV system installed

Optimum peak power considered where NPV is max

Current status and next steps

- Tool is currently still in beta-testing mode.
- 07 September 2021 is the first release date and tool is free.
- Current region we consider for analysis is Brussels but analysis for other regions possible only need is consumption profiles of different type of building/systems/consumers.
- <u>https://consolectiv.brussels/</u>
- New version release with additional features will be done soon
 - Consiering battery systems (already implemented to be launch later this year)
 - Better UI/UX (constantly being improved)
 - More automation on automatic proposal sizing for Energy producers (work in progress)
 - Integration of EV charging with some basic example of most populars EVs in Europe

• Link to access tool

https://consolectiv.brussels/