

Monitoring: Solar Park vs House

Weather Data

- $_{\circ}$ Solar Park
 - ✓Almost Everything on site (GTI, GHI, Tamb, Tmod)
- House

□Almost nothing on-site

□No IRRADIANCE FOR REFERENCE

Static Data

o Solar Park

Under control due to installation from one installer

- House
 - Many individuals

Owners may don't know some info, ie tilt-orientation-capacity

Power Data

- Connection errors in both
- But many individuals are always more difficult to contact with

Fixing Static Data Errors

The production of the panel under STC (1000W/m², 25°C, 1 atm)

Capacity

- Panel number * panel capacity (if both exist)
- Inverter model?
- Simply take the Max Power measurment (may add 5%)
 - But keep this value for all calculations and all the period of time

Tilt and orientation

- Orientation: maybe satelite view in case of a few systems
- Use of algorithms¹ for calculation, in combination with the solar angles (from PVLIB)

1 <u>"A quality control algorithm for distributed photovoltaic array power output"</u>, Killinger et all, 2017

Universiteit Utrecht What about no existing weather measurments?

• GHI (& maybe DHI) would be available somewhere

- Local weather stations
- Satelite data (meteosat GHI & DHI) < 👡

Solar Models

- Decomposition GHI -> DHI + DNI empirical (DISC, ERBS, DIRINT)
- Transpostion DHI -> Diffuse in POA Perez, Hay/Davies etc
- Effectiveness of models may differ per region. Better conduct a study!

Possible errors

- Geospatial errors station far from PV Satellite covers large area
- GTI from solar models ⇒ More errors

Peer2peer – use neighboring PV systems

- Either on large Regions (Jonathan is the best on that)
- In neigborhoods (my part)

REAL PR algorithm

78% Inliers 21% Outliers 17% under 8% over $PR_{inl} = 67.4\%$ $PR_{all} = 62.3\%$

87% Inliers 12% Outliers 7% under 5% over $PR_{inl} = 61.8\%$ $PR_{all} = 62.2\%$

87% Inliers 12% Outliers 7% under 5% over $PR_{inl} = 61.8\%$ $PR_{all} = 62.2\%$

Application on panels of MLPE system with Universiteit Utrecht neighboring panels as reference

Reference data:

- The other panels of the MLPE system
- Each moment the panel with the max power

Application on houses with ^{Universiteit Utrecht} neighboring panels as reference (150m away)

Reference data:

- The panels of an MLPE PV system 150 m away
- Each moment the panels with the max power

further use: shadow detection

PV1 vs PV3, Monday

- Not easy to find reference data: we have to be creative!!!
- Weather data are very useful but peer2peer is more acurate
- Per2peer in a neighborhood level is useful for shadow detection
- Shadow is more imprtant for the monitoring company, not that much for the owner
- But estimated loss of power due to shadow can be provided
- "Real PR" clusters to inliers and outliers Then outliers should be continuely studied for any further malfunction. ML application for further fault categorization

Thank you for your attention

Questions??

More info:

"PV System Performance Evaluation by Clustering Production Data to Normal and Non-Normal Operation"

- Odysseas Tsafarakis, Kostas Sinapis and Wilfried G. J. H. M. van Sark
- Energies 2018, 11, 977; doi:10.3390/en11040977
- New paper on shadow detection is coming soon!!!

A few more examples!!!

Energy loss

- $\varepsilon_i^{Poly}(Y_R) = Y_{f,i} Y_R \Rightarrow$ • 3 scenarios for outliers:
- $\boldsymbol{Y_{f,i}} = \varepsilon_i^{Poly}(Y_R) \boldsymbol{Y_{r,i}}$
 - $i \in [Upper, Lower, Max]$
- a) Error of outliers is 105% to the smaller threshold (ϵ_{left})
- b) Error is equal to the higher frequent error (global maximum)
- c) Error is 95% of the higher threshold (ε_{right})
- Energy Loss:

$$E_{loss} = E_{studied PV}^{scenario} - E_{studied PV}^{real}$$

Example 1

Studied (Y_f) :shaded Panel with Power optimizer Reference data (Y_r) : Pyranometer and unshaded Panel with PO

Example 2

Studied (Y_f) :shaded PV system with string optimizer Reference data (Y_r) : Pyranometer and unshaded Panel with PO

Example 3

• Same panels with different inverter are monitoring each other

75% Inliers 25% Outliers 17% under 8% over $PR_{inl} = 79.4\%$ $PR_{all} = 71.3\%$

78% Inliers 21% Outliers 17% under 8% over $PR_{inl} = 67.4\%$ $PR_{all} = 62.3\%$

87% Inliers 12% Outliers 7% under 5% over $PR_{inl} = 61.8\%$ $PR_{all} = 62.2\%$

87% Inliers 12% Outliers 7% under 5% over $PR_{inl} = 61.8\%$ $PR_{all} = 62.2\%$