

Data analytics applied to monitoring and field data for performance optimization in large PV plants

Pearl PV Workshop

Rodrigo Moretón

12-January

A Red Queen Race for PV

General context

- Very low energy prices (~ €15/MWh)
- Increasing stress in CAPEX, OPEX and WACC.
- Financial scenarios with increasingly longer periods (25-30 years).
- > Performance and O&M optimization become critical to ensure projects' profitability.

Year	Project duration (years)	OP/CAP Ratio (%)						
2014	20	30						
2019	25-30	45-55						

(IRENA, 2014)

(Vartianen et al., 2019)

A particular challenge in PV operation

PV operation needs to...

- Optimize performance with decreasing budgets and less staff available
- Manage large and geographically dispersed portfolios
- Deal with huge amount of monitoring data
- Integrate new techniques: cleaning, measurement campaigns, market integration...

¿How to assure optimized performance?

Apply advanced data analytics to field data and to monitoring data to...

- Automate performance analysis and anticipate operational failures
- Optimize interventions and remote operation b.
- Facilitate decision making

Achieving...

- > Reduction and better management of operational risks
- Increase asset quality, transparency and predictability
- > Feed back for improving future projects

Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Development		8	- 12	mo	nths																						
Construction			6-9 months																								
Guaranteed operation					2 ye	ears																					
Free operation		·													23	yea	rs										

- > Field measurements with low uncertainty
- > Extend quality control procedures along the operational phase
- ➤ Increase feedback between phases

- ✓ Installing low uncertainty sensors is worth it
- ✓ Detailed monitoring by sampling allows optimizing costs

QC of PV modules

WHAT	HOW	WHEN
Power claims	Massive I-V testing in the field Low uncertainty (<2.5%) High testing rates (+1k modules/day)	Commissioning
Degradation	First measurement with very low uncertainty (0.1% - 0.2%)	Commissioning
Optimizing O&M	Integration of testing campaigns with monitoring information	Operation
Feedback for estimations	Power rating Temperature coefficients	Commissioning

QC of PV modules

Bifacial: data analytics become more important

Bifaciality sample: 82 modules

Irradiance non-homogeneity

WHAT	HOW	WHEN					
	Measure efficiency in the field						
Asses real performance	Variation of voltage	Commissioning					
	Real temperature, altitude, cooling, dust						
Asses real performance	MPPT testing in the field	Commissioning					
	Ancillary consumptions						
Performance Losses	Clipping threshold	Operation					
	Temperature derating and limitations						
Feedback for estimations	Efficiency rating Ancillary consumption	Commissioning					

QC of PV inverters

MPPT malfunction

Temperature limitation

QC of trackers

- Analysis of the optimum angle
- Evaluation of Z-coordinate for backtracking

+100 MW PV plant: +3% recoverable energy

Accurate monitoring system with reference modules

Low uncertainty field measurements

Detailed performance surveillance and optimization

> Low uncertainty indexes reduce +80% the number of warnings by eliminating false alarms

Detection +75% of the energy lost with only 5% of the sensors

Measure effective power decrease with reference modules

Thank you for your attention!

Rodrigo Moretón r.moreton@qpv.es

12-January-2021