

P 🛑 A R L P V

Potential for collective self-consumption in local energy communities

Guilherme Luz (gpluz@fc.ul.pt) Rodrigo Amaro e Silva (rasilva@fc.ul.pt)

PEARL-PV WG5 Workshop 12/01/2021

- PROSEU project
- Self-consumption (@Portugal)
- Energy systems modelling
- Two case studies

PROSEU H2020 project

- PROSumers for the Energy Union (<u>www.proseu.eu</u>)
- The role of *prosumers* in the EU energy transition
- 10 participants, 6 countries, 3 M€
- Living Labs as co-creation spaces

Horizon 2020 European Union Funding for Research & Innovation

- Started in 2015, most of it PV
- 170+ MWp by 2019 (82% of distributed PV)
- However, <u>residential sector is strangled</u>
 - Very small-sized systems (66% ≤ 1 kWp)
 - High unitary costs

Statistics, source: Direção Geral da Energia e Geologia
Figure adapted from doi: 10.1016/j.apenergy.2017.03.112

Communities and collectives

Clean Energy Package

Legal decree 162/2019

From an individual to a Community/collective paradigm

Energy Systems modelling

- A tool to better understand the potential of Energy Communities and collective self-consumption
- Optimization-driven PV sizing, considering:
 - Electricity sharing
 - Potential constraints (e.g., rooftop area)
 - Network tariffs

* Suggested reading, doi: arXiv:2008.03044

Considered approach

Calliope: a multi-scale energy systems modelling framework* (ETH Zürich, <u>www.callio.pe</u>)

* The Journal of Open Source Software, doi: 10.21105/joss.00825

Data, data, and some more data

	Lifetime	Efficiency	Unitary cost	Area occupation
Residential- scale PV	25.000	18%	3€/Wp	15 m²/kWp
Industrial- scale PV	25 years		2€/Wp	20 m²/kWp
Grid supply			15 c€/kWh	
LV grid tariff			5.88 c€/kWh	

Energy Community w/ collective PV:

synergies between a semi-rural city and a winery

Network modelling

S - substation; DN - derivation node; PT - power transfomer; IN - interface node; W - winery

Testing different Energy Community configurations

Overall results

When compared with two independent actors (city & winery)

- $\Delta PV_{capacity}$ by up to +29%
- ΔLCOE between -0.6 and +0.9 c€/kWh
- ΔSelf-sufficiency rate by up to 5 pp
- Exceeding PV generation increases by up to 10 pp

Trade-off between economies of scale and grid costs

Need for storage and/or demand side management

Case study #2

Energy Community w/ collective PV: impact of neighborhood layout

Network modelling

- 10 residential loads from Lisbon, Portugal
- Simulated neighborhoods
 - 1 multiapartment building
 - 10 single-family houses

Economies of scale considered

individual self-consumption

Network modelling

- 10 residential loads from Lisbon, Portugal
- Simulated neighborhoods
 - 1 multiapartment building
 - 10 single-family houses

Economies of scale considered

Individual self-consumption

<u>PV deployment</u>

- Small & expensive PV systems
- MAB is limited by rooftop area

PV-load matching

- 15-min balance
- Moderate self-consumption rate

ĺ		
	SFH	MAB
kWp	0.33	
€/Wp	3.2	
Roof usage	48%	100%
SCR	65%	

*Median values

* SFH: single-family house, MAB: multiapartment building, SCR: self-consumption rate

Collective self-consumption

<u>PV deployment</u>

- SFH: +11% total capacity, +13% LCOE*
- MAB: one larger system, -33% LCOE

PV-load matching

- Sharing between dwellings
- SCR improves by 10-20 pp

	^à A				
	SFH	Δ	MAB	Δ	
kWp	1	0.7	4.15	3.85	
€/Wp	2.8	-0.4	2,2	-1	
Roof usage	53%	5%	100%	0%	
SCR	71%	6%	85%	20%	

Median/aggregated values for individual/ collective self-consumption

An illustration

4.15 kWp distribution @ Multiapartment building

- Individual self-consumption strangles residential PV
- Energy communities / collective self-consumption
 - Lower costs
 - Higher self-consumption rate
 - More democratic paradigm

Prosumers for the Energy Union | www.proseu.eu

For more information: <u>www.proseu.eu</u> gpluz@fc.ul.pt, rasilva@fc.ul.pt

0

This project received funding from the EU's Horizon 2020 research and innovation programme under grant agreement N°764056. The sole responsibility for the content of this document lies with the authors. It does not necessarily reflect the opinion of the EU.