Simulation of the bifacial energy gain for photovoltaic plants using the Graphics Processing Unit (GPU)

Training School, University of Brasov, Romania

EU COST Project Pearl PV

08/07/2021

P 🛑 A R L P V

Jonathan Leloux Jesús Robledo Babacar Sarr

- What potential for bifacial PV? Why?
- Bifacial Energy Gain (BEG) to be expected?
- Parameters influencing BEG
- Uncertainties
- Risk assessment
- Current status of simulation tools
- Practical solutions for Energy Yield Assessments (EYA)

General concepts on bifacial PV applications

LUCISUN High solar resource + albedo \rightarrow Bifi paradise

NASA Earth observation, 2019

Kopecek, 2015

surface	albedo [%]		
water	8		
dry dark soil	13		
grass	17-28		
dry sand	35		
dune sand	37		
old snow	40-70		
reflective roof coatings	80-90		
fresh snow	75-95		

Bifacial PV plants

PV plant with 1-axis trackers in Egypt

PV plants in Canada

Vertical bifacial PV

Bifacial PV in agrivoltaics

LUCISUN High uncertainties might slow down bifacial

QUICKPOLL

3. Bifacial promises a significant yield advantage. Why would you delay using bifacial?

Poll Results (single answer required):

a. Uncertainties about yield gains	41%
b. It requires changes in the BOS	10%
c. Unsure/negative feeling about Glass-glass	8%
<mark>d. For other re</mark> asons	15%
e. I am ready to use bifacial now!	26%

Webinar PVTech, 2019

LUCISUN Assessing the albedo? Databases do not agree!

Time Series, Area-Averaged of Surface albedo monthly 0.5 x 0.625 deg. [MERRA-2 Model M2TMNXRAD v5.12.4] over 2000-Jan - 2009-Nov, Region 1 36.8N, 108.3W, 36.88N

Time Series, Area-Averaged of Albedo monthly 0.125 deg. [NLDAS Model NLDAS_MOS0125_M v002] % over 2000-Jan - 2009-Nov, Region 108.4W, 36.8N, 108.3W, 36.88N

LUCISUN Spectral considerations on albedo? Complex

Reported BEG values: quite a wide range!

bSolar 2014

ISC Konstanz 2014

bSolar 2014

EdF R&D 2014

Sanyo 2009

ECN 2014

Toor and others, 2016

LUCISUN Ground clearance plays a major role on BEG

PV system in Tenerife, Guerrero-Lemus, 2016

Bifacial PV simulation – Training School Pearl PV, Brasov, Romania – 08/07/2021

BEG 1 PV module > 2 x BEG PV plant

Illustrations for Cairo (DNI=1760 kWh/m²), albedo=0.2, • equivalent GCR=63%, fixed-tilt=30°, elevation=60cm

Simulations for Cairo, Dupuis, 2016

Bifacial PV simulation: state of the art

Simulation tools: PVSyst, SAM \rightarrow view field

LuciSUN

Interfaces from PVsyst and SAM

1 tk.

Te

W

Ge

EP

Si

Main Control

out Variables File:	88	Search		
READ	SAVE			
stFolder:	C:\Users\sayala\Docun	Search		
atherFile Input:	GetEPW	C ReadEPW / TMY		
t EPW (Lat/Lon):	33	-110		
W / TMY File:	EPWs\\USA_VA_Richm	Search		
nulation Name:	Demo1			

Simulation Control

Fixed, Cumulative	e Sky Yearly	
Fixed, Cumulative Sky wi	th Start/End ti	imes
Fixed, Hourly by T	ïmestamps	
Fixed, Hourly for th	e Whole Year	2
Tracking, Cumulati	ve Sky Yearly	
Tracking, Hourty	for a Day	
Tracking, Hourly with	Start/End tim	es
Tracking, Hourly for t	the Whole Yea	ır
StartDate (MM DD HH):	6	21
Enddate (MM DD HH):	6	30
Timestamp Start:	4020	
Timestamp End:	4024	

Tracking Parameters

Backtrack	æ	True	C	False
Limit Angle (deg):	60			11
Angle delta (deg):		5		
Axis of Rotation:	(*	Torque Tube		Panels

TorqueTube Parameters

	-				1		Analysia	5 rarai	licter 3	
TorqueTube:	L.	True		False			# Sensors:	9		
Diameter:	0.1						Mod Wanted:	10	Row Wanted:	1
Tube type:	(•	Round	C	Square	C Hex	C Oct	and a		1	2
TorqueTube Material:		Metal Grey	C	Black			CLEAR	DEFAULT	1	RUN

numcells x 12 numcells y: Size Xcell: Size Ycell: Xcell gap: Vcell gap: Module size x: 0.98 1.98 Xgap | Ygap | Zgap : 0.05 0.15 0.10 Bifacial Factor (i.e. 0.9): 0.9 VIEW Module Name: Prism Solar Bi60 Rewrite Module: @ True C False

False

True

Module Parameters Prism Solar Bi60

Scene Parameters

Number of Panels

Cell Level Module

now spacing by:	GUR	Pitch	-
GCR:	0.35	Pitch:	10
Albedo:	0.62		
# Mods:	20	# Rows:	7
Azimuth Angle (i	i.e. 180 for South	h): 180	
Clearance height	: 0.8	Tilt	10
Auis Azimuth (i.e	180 for EW HS	ATtrackers):	180
Hub height:	0.9	VIEW	

Sensors:	0		
	9		
fod Wanted	: 10	Row Wanted:	3
CLEAR	DEFAULT	F	UN
	CLEAR	CLEAR DEFAULT	CLEAR DEFAULT F

LUCISUN NREL/SANDIA + Imec/PVcase \rightarrow Ray tracing

Radiance /PVlib, NREL/SANDIA, Deline, 2016

LUCISUN Ray tracing vs view fields: high differences

S. Ayala Pelaez, C. Deline, S. MacAlpine, B. Marion, J. Stein, R. Kostuk, "Comparison of bifacial solar irradiance model predictions with fieldvalidation" IEEE Journal of Photovoltaics, 2019, vol 9 no. 1, pp. 82-88.

Timing

Rendering time depends strongly on the output image resolution, the number of light sources, scene complexity, the importance of indirect illumination, and the desired accuracy. Rendering time depends weakly on the materials used, emitting surface dimensions and output distributions, and the number of images rendered under the same lighting conditions (since diffuse indirect values may be reused just like radiosities).

A low resolution rendering of an empty space with a single light source will take a few seconds on a modern workstation (eg. Silicon Graphics IRIS or Sun SPARCstation). A high resolution rendering of a moderately complex office space with a direct lighting system will take about 1 hour on the same machine. The same rendering with daylight entering through venetian blinds will take about 2 hours. If the direct lighting system is replaced by an indirect hanging system, the rendering time will increase to about 4 hours. A large auditorium with 100 pendant fixtures will take about 12 hours to render at high resolution. An atrium space with significant indirect illumination could take as long as 20 hours. Such a rendering could be distributed among 20 workstations and be done in close to 2 hours. A 30 second walk-through animation of a large auditorium would take approximately 3 weeks to compute on a single workstation. This work could be distributed among 10 workstations and be done in a little more than 2 days.

https://www.radiance-online.org/about/detailed-description.html

Bifacial PV simulation based on GPU: Lusim from LuciSun

LUCISUN GPUs developed for video games can help bifi!

Evolution in Lara Croft (Tomb Raider) in 2 decades

First person shooter (Battlefield)

GPUs applied to shading evaluation

90 W/m2

350 W/m2

Robledo et al., From video games to solar energy: 3D shading simulation for PV using GPU, Solar Energy, Elsevier, 2019

Bifacial PV simulation – Training School Pearl PV, Brasov, Romania – 08/07/2021

LUCISUN Implementation of BRDF in GPU for bifacial

Albedo functions programmed into to the GPU

BEG vs irradiance components

Selection of on PV cell among PV generator

Backside irradiance from direct, diffuse and reflected components

- 3D view generation for whole PV generator
- 206,000 rays
- 10 to 20 ms per picture

Bifacial for vertical agrivoltaic plants

Bifacial for agrivoltaics and carports

Comparison BEG 1 module vs 1 row

LUCISUN Irradiance gains depend on components

Direct reflected irradiance on back side

Isotropic diffuse sky irradiance on back side

Global irradiance on front and back side

Day with highest Kt: 01 May

Solar irradiance components on front side

LuciSUN

LUCISUN Solar irradian

Global irradiance on back side

Direct reflected irradiance on back side

Bifacial PV simulation – Training School Pearl PV, Brasov, Romania – 08/07/2021

LUCISUN Isotropic diffuse sky irradiance on back side

Carports and vertical agrivoltaics

- Different materials and albedos
- Complex structures on the back side
- Impact of other elements than ground
 - Reuse of evaluation meshes

- Installation over irregular terrains
- Undefined "front/back" sides

Carports with detailed 3D elements

- Current resolution 512x512 pixels
- Pictures generated at different places for different purposes
- Support for debugging analysis
- Scenario evolution capture (sky conditions, sun position, trackers, etc.)
- Evaluation points linked with auxiliary meshes

Setting up the meshes

- Support definition for spherical view generation
- Generation through customized software, but standard format
- Adaptable to real surfaces
- Resolution vs computation time control
- Possibility for reuse of areas under a specific pattern (scalability)
- Easy identification of the sources of errors for debugging

Irradiance distribution on the ground

- Objects in the scenario partially block sky visibility (diffuse shading), reducing diffuse irradiance contribution
- Preliminary step to evaluate sky diffuse reflectance potential
- Needs to be adapted to the shape of the objects
- One step calculation for fixed structures, but module rotation dependent for trackers

Application to vertical bifacial PV

- Identification of the contribution of the pixels in the picture with direct sight of the sky
- Non-uniform irradiance scenarios from sky possible (at pixel level)
- Easy identification of other elements blockage (diffuse shading)
- Larger effect with high tilt angles (maximum for agrivoltaics, marginal for carports)

View factors for carports and vertical PV

- Identifies the contribution of the pixels in the picture with reflection of the irradiance from sky
- Includes stationary albedo effects
- Takes into account objects orientation (previous step needed)
- Takes into account possible structure obstructions
- Not dependent on Sun position (computation acceleration; one-step computation for fixed structures)

LUCISUN Irradiance distribution on back side of carports

- Set of spherical view contribution pictures computed per vertex of auxiliary mesh to obtain the local view factor
- After multiplication by different irradiance contributors, we obtain the detailed irradiance breakdown on one side of the PV module
- Information transferred at PV cell level to compute non-homogeneities (mismatch)
- Detailed of structure blockage captured depending on mesh resolution (versus computational time)

Contact

Jonathan Leloux

- **Email** jonathan.leloux@lucisun.com
- Phone(+32) 468 08 37 38
- **LinkedIn** www.linkedin.com/in/jonathanleloux