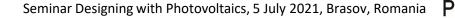
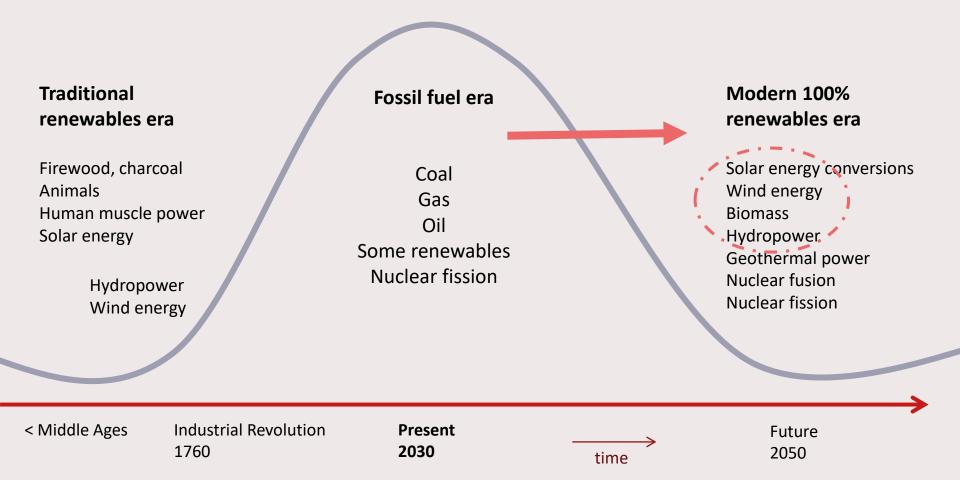


Ρ


Physics answer to the question

Can we achieve 100% solar energy supply?


Yes, we can!

P V UNIVERSITY OF TWENTE.

R

Energy transitions

Solar energy, technologies and their application contexts

Electricity

Thermal

energy

Photovoltaic (PV) effect in semiconductor materials: silicon, III-V compounds, chalcogenides etc. Concentration irradiance.
PV systems: intermittency can be partially handled by grid, and demand management, otherwise additional storage is required

 Heat transfer through various (fluid) media by absorption, conduction, convection and radiation. Short term storage in system.

• Eventually combined with PV technologies (PVT) and/or heat engine (CSP).

Infrastructures Buildings

Infrastructures

Buildings

Transport

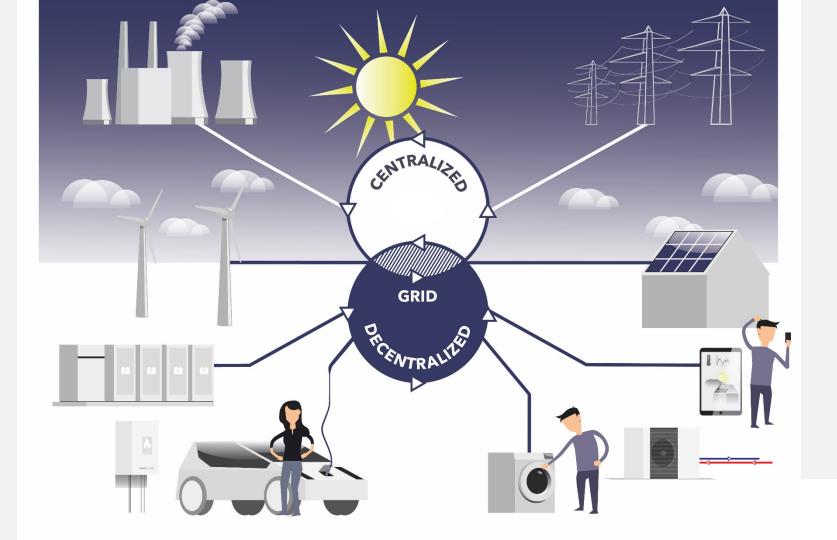
Challenge for large-scale use: daily and seasonal storage

Challenge: seasonal storage

Infrastructures

Transport

Ρ

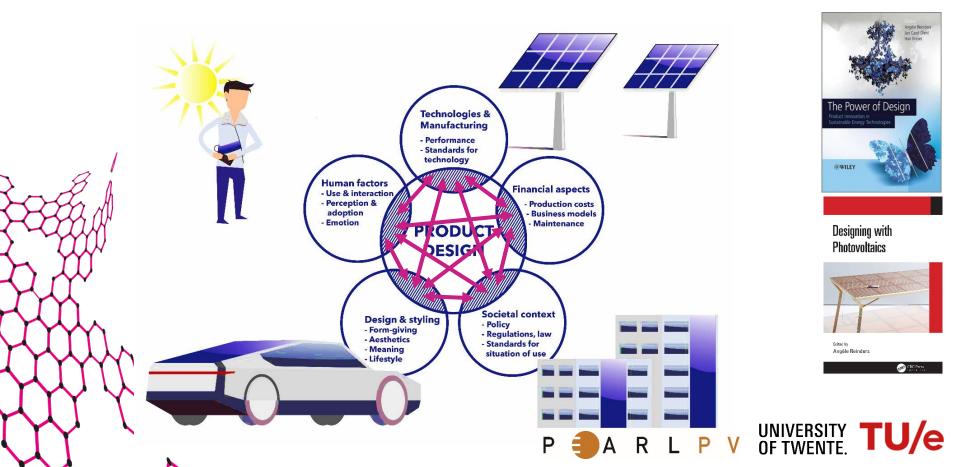

Challenges: cost compared to fossil fuels, TRL of technologies

UNIVERSITY OF TWENTE.

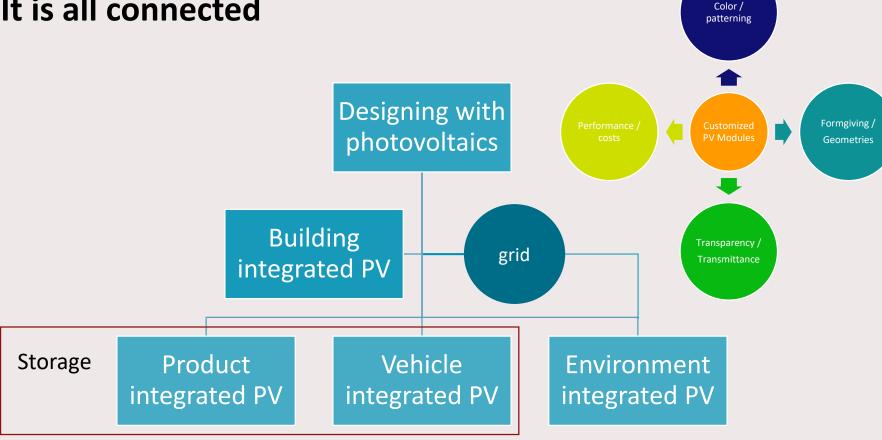
Fuels

 Solar fuels: hydrogen, methane and ammonium, etc. Produced by: Electrolysis using PV electricity or photochemical processes using solar heat as an input
 Fuel itself is the storage means

A possible route to achieve 100% solar energy supply



producing and using energy in a way that "meets the needs of the present without compromising the ability of future generations to meet their own needs" "the human capacity to shape and make our environment in ways without precedent in nature, to serve our needs and give meaning to our lives"


Ρ

the long-term, structural transformation of a society which is mainly based on fossil fuel conversions to a decarbonized one with a high share of sustainable energy

DESIGN-DRIVEN RESEARCH

It is all connected

Solar integration: unique appearance will be possible

Backpack by Solid Grey, Kiwitz, 2016

PV plant in the shape of pandas

Solar powered PV art work resembling vegetation, Compaz Art, 2019 La Seine Musicale, by Shigeru Ban Architects, Paris.

PV applications in transport: electric vehicles

Vehicles with integrated PV developed by LightYear (left), IM Efficiency (middle) and Trens Solar (right)

R

Ρ

UNIVERSITY OF TWENTE.

P V

ſU/e

Design features of commercially available PV

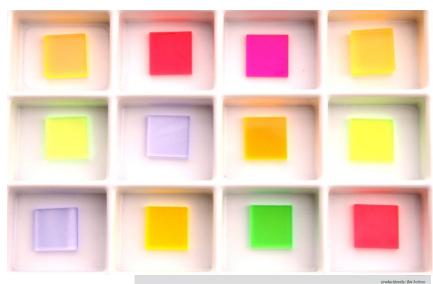
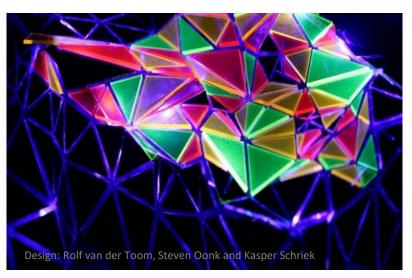

PV tech- nologies	Typical size Substrate (mm × mm)	Patterning	Shaping of edges	Bending andcurvature	Color	Transparency
CdTe	Customizable from 10 × 10 to 1,000 × 2,000, rigid and flexible	Screen printing front glass	n.a.	Flexible substrate	Cells are brownish or black. Color by colored front glass	Semi-transparency by wider space between cells and laser scribing
CIGS	Customizable from 10 × 10 to 1,000 × 2,000, rigid and flexible	Screen printing front glass	n.a.	Flexible substrate	Colored front glass	Semi-transparency by wider space between cells and laser scribing
a-Si	Customizable from 10 × 10 to 1,000 × 2,000, rigid and flexible	Screen printing front glass	n.a.	Flexible substrate	Cells are usually brownish or black, other colors can be produced	Semi-transparency by wider space between cells and laser scribing
x-Si/p-Si	156 × 156 (cells), rigid only due to the fragility of the cells	Cells can be used as pixels	Laser cutting	Curvature by rigid carrier substrate	Cells are usually blue, other colors can be produced	Semi-transparency by wider space between cells and punching holes in cells
DSSC	Customizable from 10 × 10 to 1,000 × 2,000, rigid and flexible	Cells can be used as pixels	Defined by cell geometry, i.e., shaping of cell	Flexible substrate	Orange, reddish, purple, depending on the dye applied	Always transparent =

Figure from Chapter 3, Designing with Photovoltaics, 2020

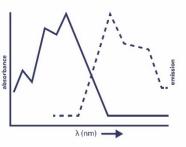
Current Table, Marjan van Aubel Studio, Designing with Photovoltaics, 2020

Design features of luminescent solar concentrators



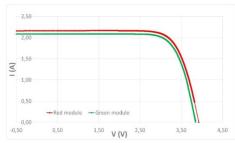
Colors of LSCs, Chapter 3, Designing with Photovoltaics, 2020 & Shaping of LSCs:

Design: Jullian Claus, Rosan Harmens and Hieu Nguyen



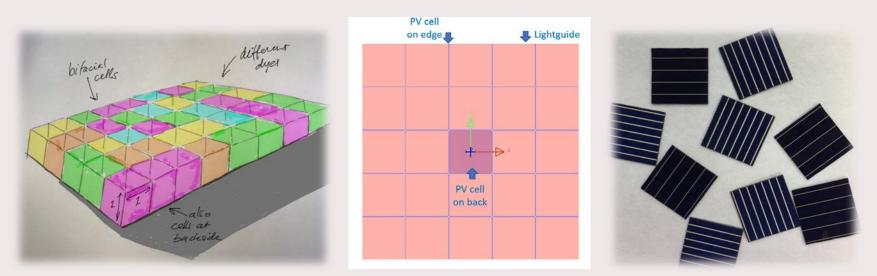
LUMINESCENT SOLAR CONCENTRATOR PHOTOVOLTAICS (LSC PV)

Solar irradiance


TIR

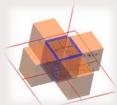
Reabsorption

Reinders, A.H.M.E., Debije, M.G. and Rosemann, A.L.P., Measured efficiency of a luminescent solar concentrator PV module called Leaf Roof, Journal of Photovoltaics, Vol. 7, No. 6, 1663 – 1666, 2017

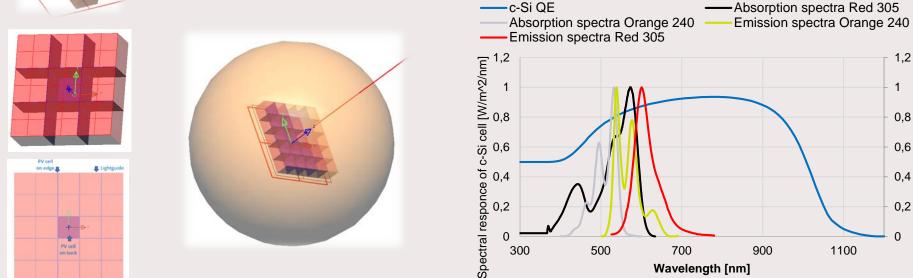


LSC PV modules from the LeafRoof project and their I-V curves under Standard Test Conditions (Reinders, Debije et al. 2017).

Developing highly-efficient LSC PV devices


Bifacial LSC PV devices with an array of cubical lightguides

Angele Reinders, Ned Ekins-Daukes, Timothy Schmidt, Hanbo Yang, Monika Michalska, Rosina Pelosi, Marcello Nitti, Lara Gillan, Dane McCamey, Elham M. Gholizadeh, Parisa Hosseinabadi, Blair Welsh, Scott Kable, *Designing with luminescent solar concentrator photovoltaics*, IEEE 46th Photovoltaic Specialists Conference, Chicago, **2019**

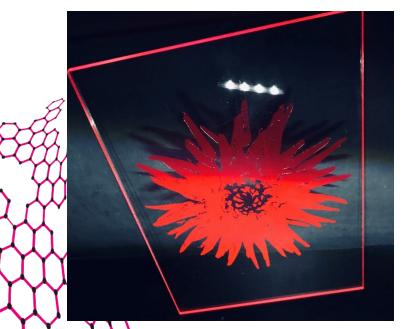

Ray-tracing simulations of bifacial LSC PV devices

LSC cubes: 1 x 1 x 1 cm3, PMMA doped with Lumogen dye (Orange 240 or Red 305) Silicon solar cells, refractive index is wavelength dependent Irradiance: 700 W/m² direct (AM1.5 spectrum) and 300 W/m² diffuse irradiance

-c-SiQE

Vormalized absorption and emission spectra

Aghaei, M.; Nitti, M.; Ekins-Daukes, N.J.; Reinders, A.H. Simulation of a Novel Configuration for Luminescent Solar Concentrator Photovoltaic Devices Using Bifacial Silicon Solar Cells. Appl. Sci. 2020, 10, 871.


Power conversion efficiency (%)

			Orang	e Dye		Red Dye			
		Whole device		Device with only side cells		Whole device		Device with only side cells	
	Number of PV cells	Min	Max	Min	Max	Min	Max	Min	Max
5 ••• 6 4 ••• 3	4 on the sides + 5 on the back	6.7	9.2	0.3	0.9	5.			K
10	12 on the sides + 9 on the back	13.0	16.9	0.9	2.5	11			
proved at general a proving a provin	40 on the sides + 25 on the back	14.5	15.5	1.8	2.3	13			1 A
Arnen fran Anereka († 1960) 19. – Anereka († 1960)									

Aghaei, M.; Nitti, M.; Ekins-Daukes, N.J.; Reinders, A.H. Simulation of a Novel Configuration for Luminescent Solar Concentrator TU/e Photovoltaic Devices Using Bifacial Silicon Solar Cells. Appl. Sci. 2020, 10, 871.

PRINTABLE LSC PV MODULES

Prints with luminescent dyes on glass or PMMA can be graphically tailored

Example shown left at 1 A4 size print

Ρ

Collaboration with

R

LPV

UNIVERSITY OF TWENTE. **TU/e**

Integration of printed luminescent solar PV technology in windows, design by Reinders, 2020

Acknowledgements

Seminar Designing with Photovoltaics, 5 July 2021, Brasov, Romania

My group members: Dr. Reza Aghaei, Alonzo Sierra Rodriguez Dr. Cihan Gercek, Kunaifi, Xitong Zhu, Amrita Raghoebarsing Neel Patel, Olga Kanz, Martin Huijzer, Wouter Eggink and Arjan Frijns.

As well as master students: Tiago Santana, Marcello Nitti, Vincent Nieuwenhuizen, Nikhita Desai, Varildo Vaseur, and others, and all students that have attended the design course Sources of Innovations in Fall 2019

UNIVERSITY OF TWENTE.