

The economic impact of failures in the field

David Moser

14 October 2019, Malta

The Quest for Quality

Does quality have a real impact on the LCOE?

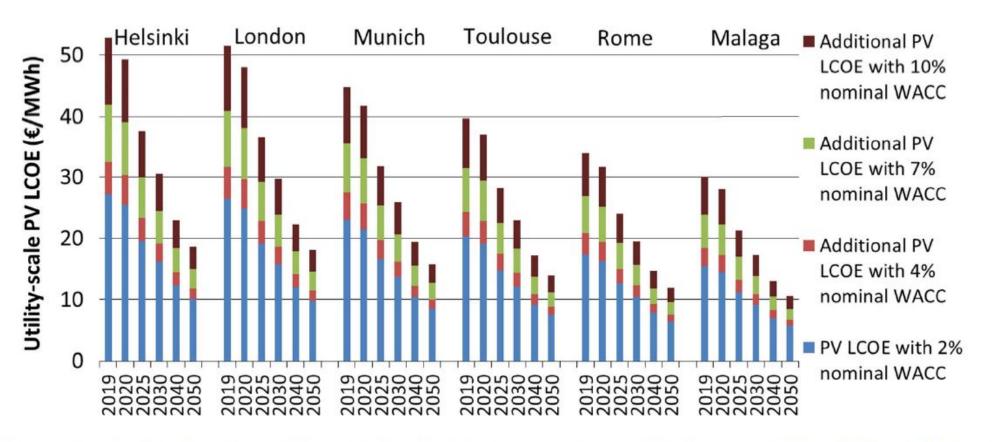
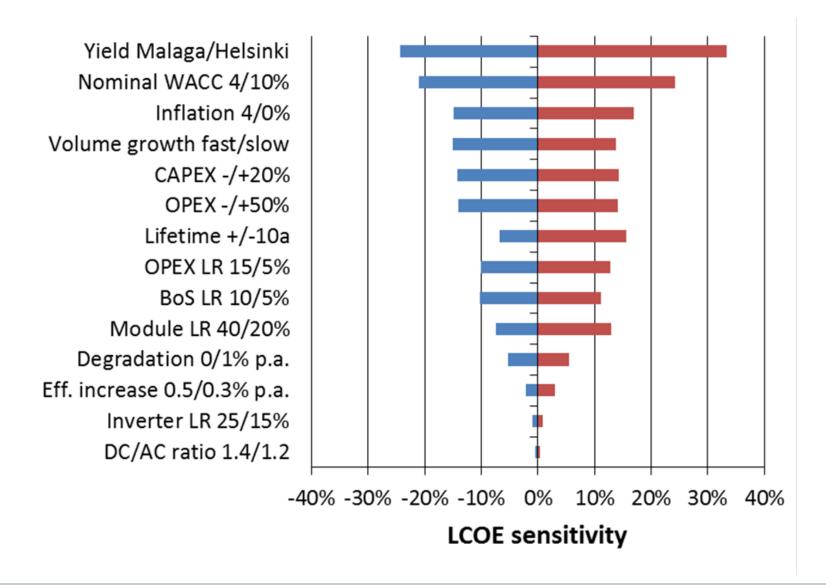
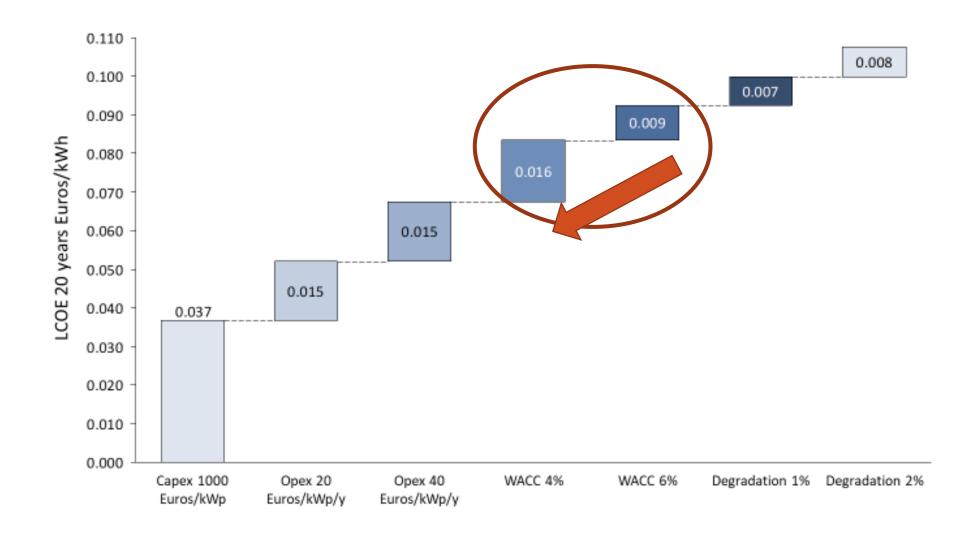



FIGURE 9 Photovoltaics (PV) levelised cost of electricity (LCOE) in six European locations for the years 2019 to 2050; in 2019 euros

Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelised cost of electricity, Eero Vartiainen, Gaëtan Masson, Christian Breyer, David Moser, Eduardo Román Medina, PIP 2019 https://doi.org/10.1002/pip.3189



Does quality have a real impact on the LCOE?

Does quality have a real impact on the LCOE?

ETIP PV Conference

QUALITY AND SUSTAINABILITY OF PV SYSTEMS CONFERENCE

3 May 2018 • BIP, Rue Royale 2-4, Brussels

- quality in PV has a leverage effect with the benefits that can clearly offset the added costs
- bankability is a variable concept depending on stakeholders and context while quality is an absolute value
- feedback loop from downstream to upstream is essential to define what is really needed in terms of quality checks of PV components
- large scale performance data are much needed to be able to better assess and improve the assumptions in business models

The journey: quality, performance and reliability

2000... 2010 2015

2017 2018 2019 2020 2022

PV performance database

PV performance database Failure review in the field Uncertainty framework

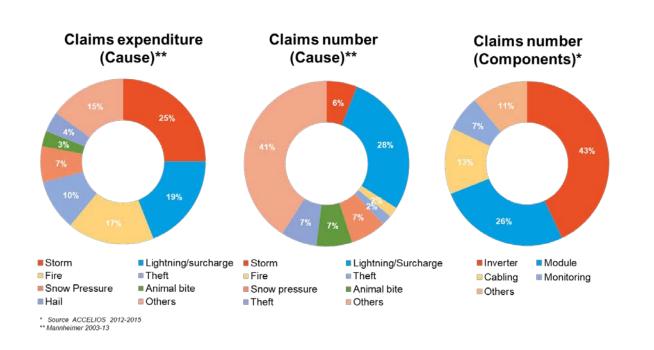
PV performance database

Industry4.0 + IoT platform Big data analytics

Technical risks framework

Tracking defects in the field

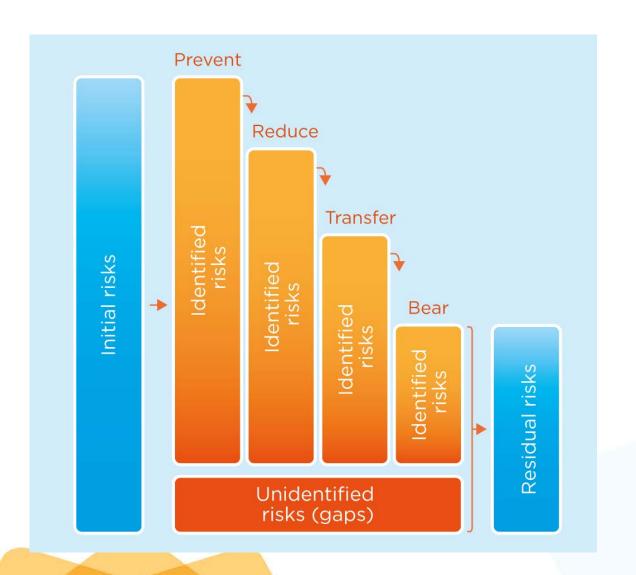
TASK13: Review of Failures of Photovoltaic Modules, M. Köntges et al


Majority of returns associated with failures that can be detected visually (underestimation of other type of failures?)

Systematic use of visual inspection

Large dataset of failures

Large datasets available from

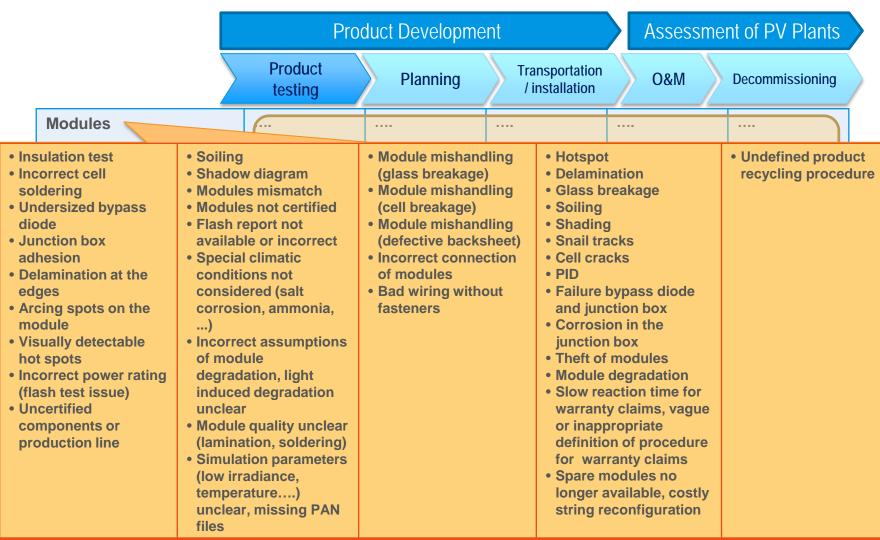

- Field inspections
- O&M ticketing system
- Insurance claims
- Third party review

Risk assessment

The risks stay with the owner/operator of the system. Risks can be vastly reduced and transferred

Technical risk framework

Α	Risk identification
В	Risk assessment
С	Risk management
D	Risk controlling



www.solarbankability.eu

Product Development

Assessment of PV Plants

Product testing

Modules	Insulation test				
Inverter	Incorrect cell soldering				
Mounting stru	 Undersized bypass diode 				
Connection & distribution boxes	Junction box adhesion Delamination at the edges Arcing spots on the module Visually detectable hot spots Incorrect power rating (flash test issue) Uncertified components or production line				
Cabling					
Potential equalization grounding, LPS		List	of faile	ures	
Weather station, communication, monitoring					
Infrastructure & environmental influer					
Storage system					
Miscellaneous					

Product Development

Assessment of PV Plants

Planning

Medulee					
Modules	(• Soiling	1		
Inverter		Shadow diagram Modules mismatch			
Mounting structure		Modules not certified Flash report not			
Connection & distribution boxes		available or incorrect • Special climatic conditions not			
Cabling		conditions not considered (salt corrosion, ammonia,			
Potential equalization & grounding, LPS) • Incorrect assumptions	f fail	ures	
Weather station, communication, monitoring		of module degradation, light induced degradation unclear			
Infrastructure & environmental influence		Module quality unclear (lamination, soldering)Simulation parameters			
Storage system		(low irradiance, temperature)			
Miscellaneous		unclear, missing PAN files			

Product Development

Assessment of PV Plants

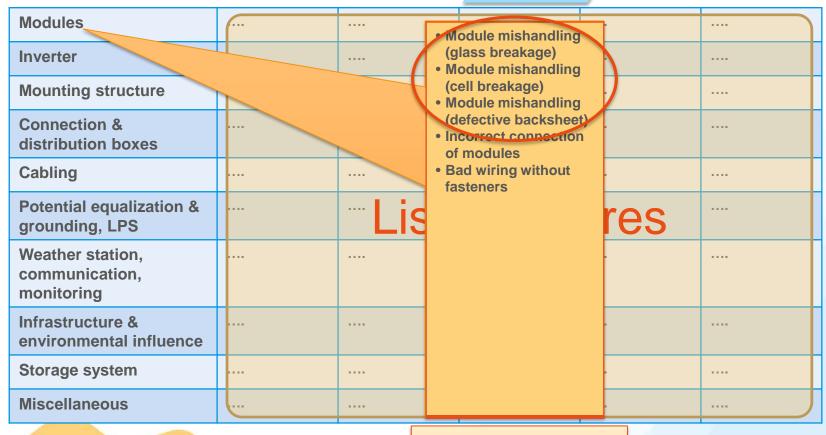
Planning

Modules	 	j'		
Inverter	 Soiling Shadow diagram Modules mismatch			
Mounting structure	Modules not certified Flash report not			
Connection & distribution boxes	available or incorrect • Special climatic conditions not			
Cabling	 conditions not considered (salt corrosion, ammonia,			
Potential equalization & grounding, LPS) • Incorrect assumptions	f fail	ures	
Weather station, communication, monitoring	 of module degradation, light induced degradation unclear			
Infrastructure & environmental influence	 Module quality unclear (lamination, soldering)Simulation parameters			
Storage system	 (low irradiance, temperature)			
Miscellaneous	 unclear, missing PAN files			

Product Development

Assessment of PV Plants

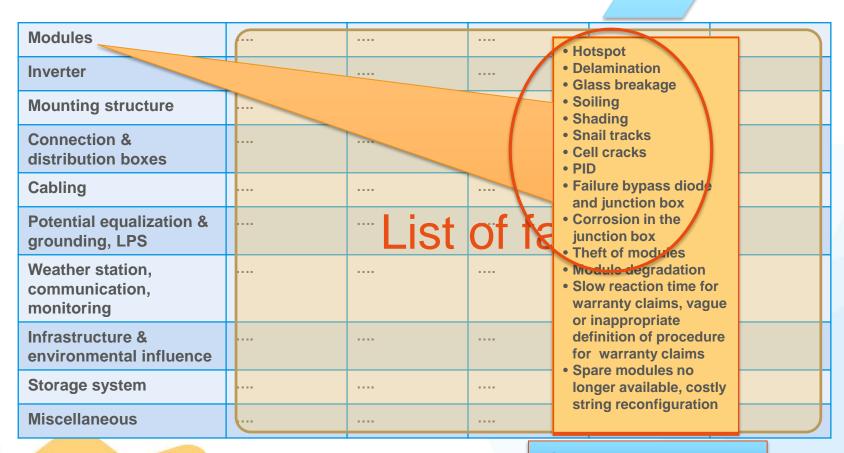
Planning


Modules					
Inverter	• SI	oiling hadow diagram odules mismatch			
Mounting structure	• M	odules mismatch odules not certified lash report not			
Connection & distribution boxes	a\ • S _I	vailable or incorrect pecial climatic onditions not			
Cabling	сс	onsidered (salt			
Potential equalization & grounding, LPS	In	orrosion, ammonia,	f fail	ures	
Weather station, communication, monitoring	···· de	f module egradation, light duced degradation nclear			
Infrastructure & environmental influence	(la	odule quality unclear amination, soldering) imulation parameters	-		
Storage system	···· te	ow irradiance, emperature)			
Miscellaneous		nclear, missing PAN les			

Product Development

Assessment of PV Plants

Transportation / installation


Precursors

Product Development

Assessment of PV Plants

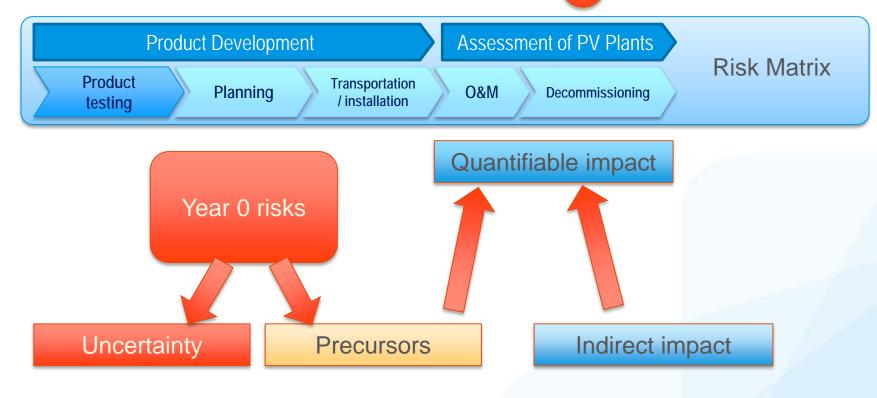
O&M

Quantifiable impact

Product Development

Assessment of PV Plants

0&M


Modules				
Wodules	 		Hotspot	
Inverter			Delamination Glass breakage	
Mounting structure			• Soiling • Shading	
Connection & distribution boxes	 		Snail tracks Cell cracks PID	
Cabling	 		Failure bypass diode and junction box	
Potential equalization & grounding, LPS	 "List	of fa	-	
Weather station, communication, monitoring	 		 Module degradation Slow reaction time for warranty claims, vague or inappropriate 	
Infrastructure & environmental influence	 		definition of procedure for warranty claims • Spare modules no	
Storage system	 		longer available, costly string reconfiguration	
Miscellaneous	 		String reconliguration	

Indirect impact

Classification of technical risks

- Category of risk
- Common nomenclature
- Standardised quantification

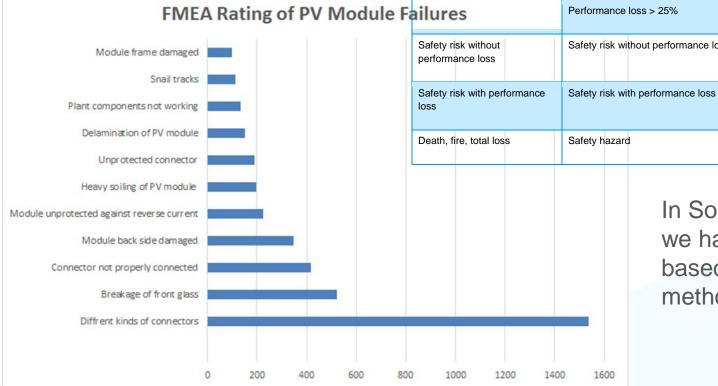
Impact

- on uncertainty (exceedance Probability)
- on CAPEX
- on CPN (O&M)

Technical risk framework

Α	Risk identification
В	Risk assessment
С	Risk management
D	Risk controlling

www.solarbankability.eu



FMEA approach

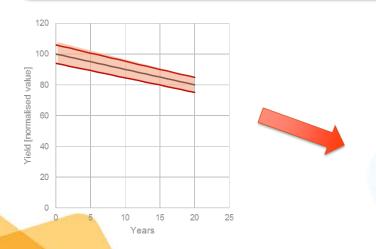
 $RPN = S \times O \times D$

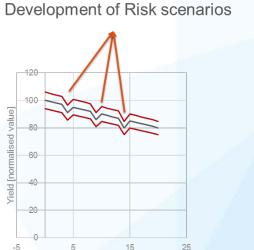
Coverity	Criteria	Donking
Severity	Criteria	Ranking
None	No effect, Performance loss < 0.5%	1
Low	Performance loss < 1 %	2
	Performance loss < 3 %	3
Moderate	Performance loss < 5 %	4
	Performance loss < 10 %	5
High	Performance loss < 25 %	6
ailures	Performance loss > 25%	7
Safety risk without	Safety risk without performance loss	8

In Solar Bankability
we have created a cost
based FMEA
methodology

10

Quantification of the economic impact of technical risks

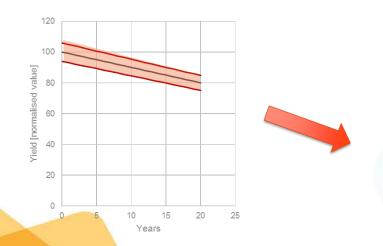



Planning

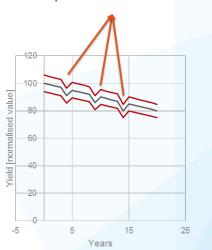
- Risks to which we can assign an uncertainty (e.g. irradiance)
- → Impact on financial exceedance probability parameters

O&M

 Risks to which we can assign a Cost Priority Number CPN (e.g. module and inverter failure) given in Euros/kWp/year
 → Impact on cash flow

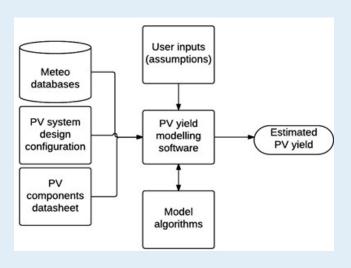

Years

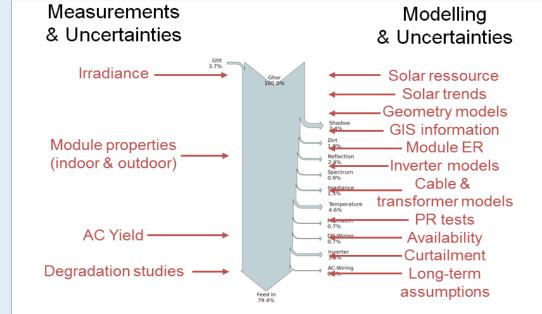
Quantification of the economic impact of technical risks

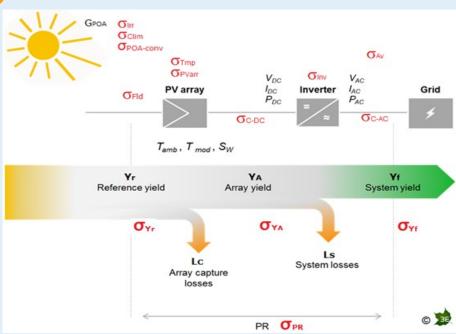


Planning

- Risks to which we can assign an uncertainty (e.g. irradiance)
- → Impact on financial exceedance probability parameters

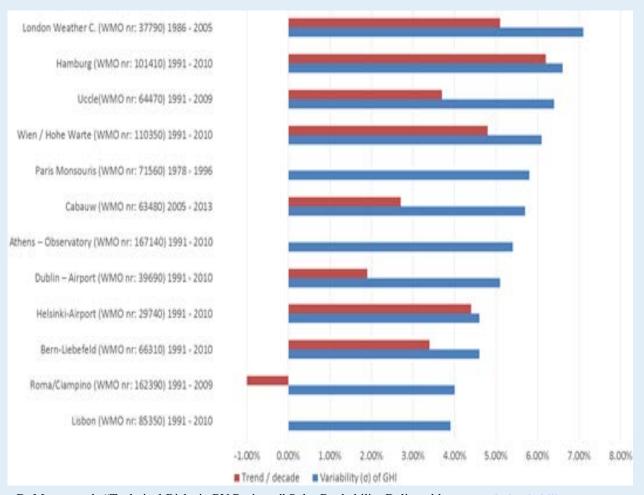

Development of Risk scenarios

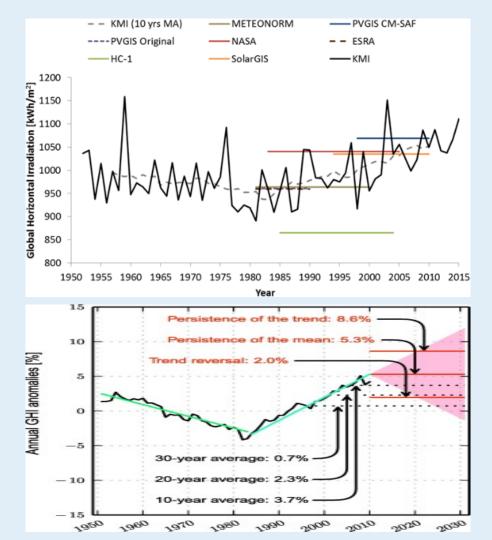



Calculation of uncertainty

Uncertainties in PV System Yield Predictions and Assessments

Christian Reise, Alexandra Schmid, Björn Müller, Daniela Dirnberger, Nils Reich, Giorgio Belluardo, David Moser, Philip Ingenhoven, Mauricio Richter, Joshua S. Stein, Clifford W. Hansen, Anton Driesse, Lyndon Frearson, Bert Herteleer

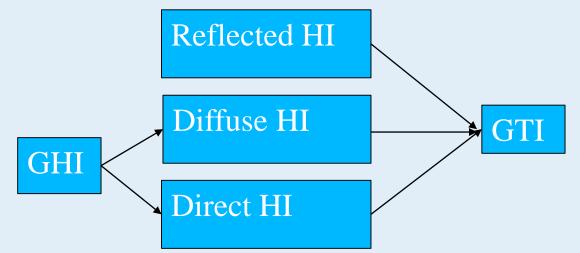

IEA PVPS Task 13, Subtasks 2.3 & 3.1 Report IEA-PVPS T13-12:2018 April 2018

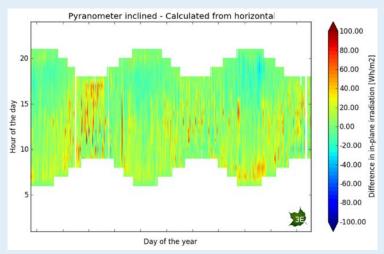


eurac research

Irradiance measurements and solar resource assessment: irradiance variability and trends

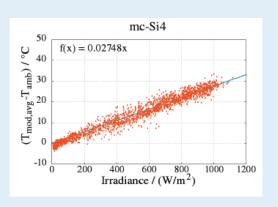
D. Moser *et al.*, "Technical Risks in PV Projects." Solar Bankability Deliverable www.solarbankability.com IEA PVPS Task 13, Subtasks 2.3 & 3.1 Report IEA-PVPS T13-12:2018 April 2018

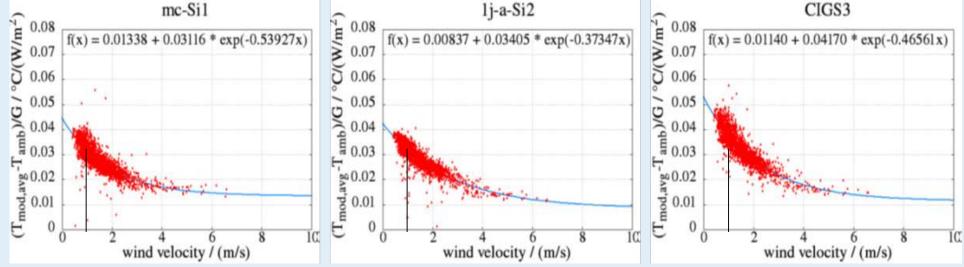




Irradiance measurements and solar resource assessment: G_POA, decomposition and transposition models

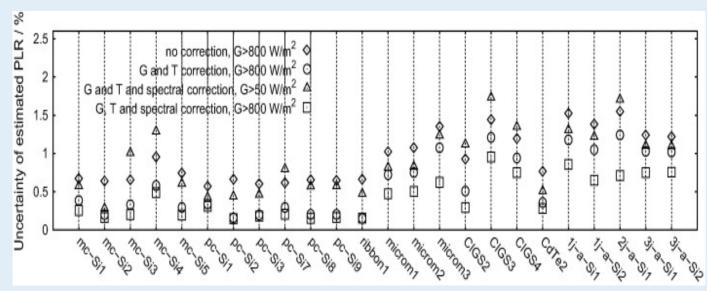
		Hay	Isotropic	Muneer	Perez
	Erbs	28.8%	28.8%	28.9%	18.7%
10 × 100 0 0	Ruiz_G0	5.1%	5.8%	5.3%	6.3%
nrmse	Ruiz_G2	5.4%	5.4%	5.6%	6.4%
	Skartveit	4.8%	6.6%	4.8%	5.2%
	Erbs	-14.7%	-14.8%	-14.7%	-9.7%
nmbe	Ruiz_G0	1.1%	-1.3%	1.5%	2.7%
IIIIDE	Ruiz_G2	1.3%	-1.0%	1.7%	2.8%
	Skartveit	0.0%	-2.5%	0.4%	1.4%
	Erbs	17.3%	17.3%	17.3%	11.3%
nmaa	Ruiz_G0 3.4%	3.4%	3.8%	3.5%	4.3%
nmae	Ruiz_G2	3.5%	3.6%	3.6%	4.3%
	Skartveit	3.0%	4.2%	3.1%	3.5%

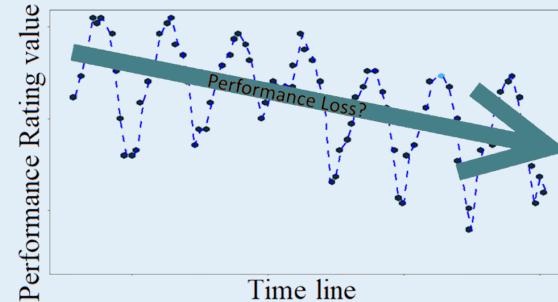

Credits: 3e

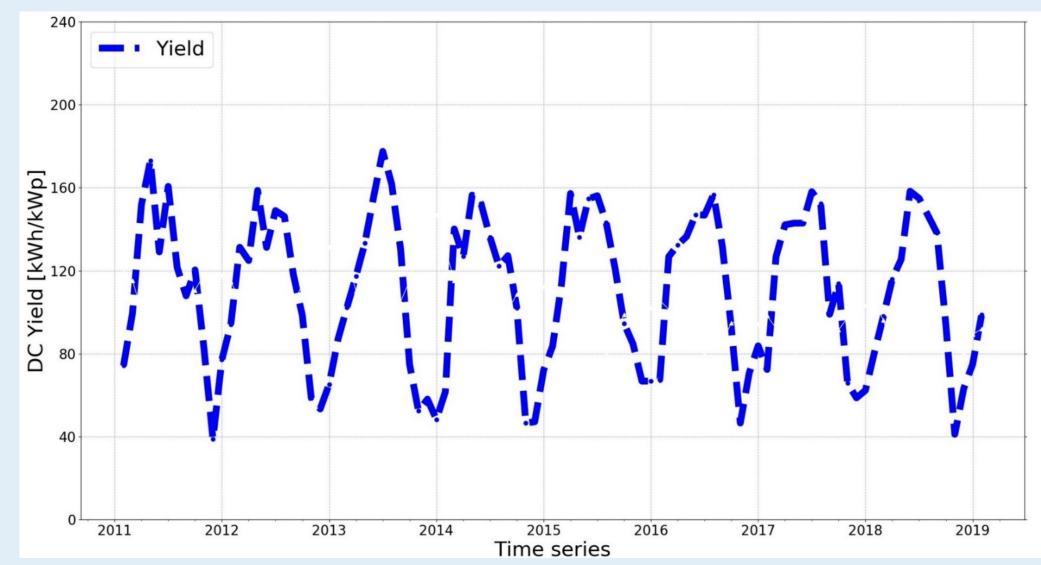

eurac research

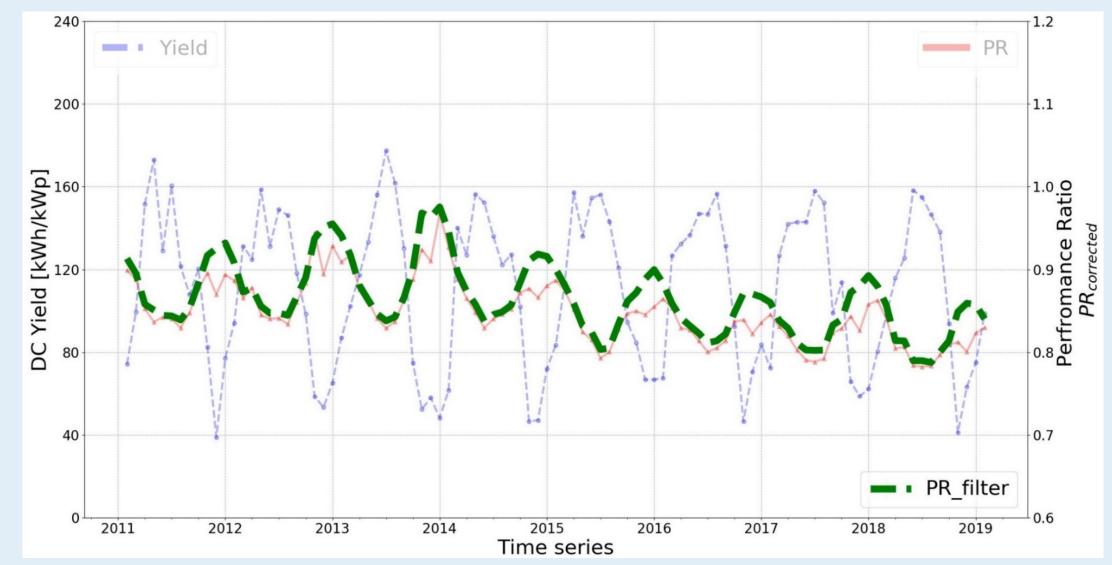
Temperature: environmental conditions and module temperature calculation

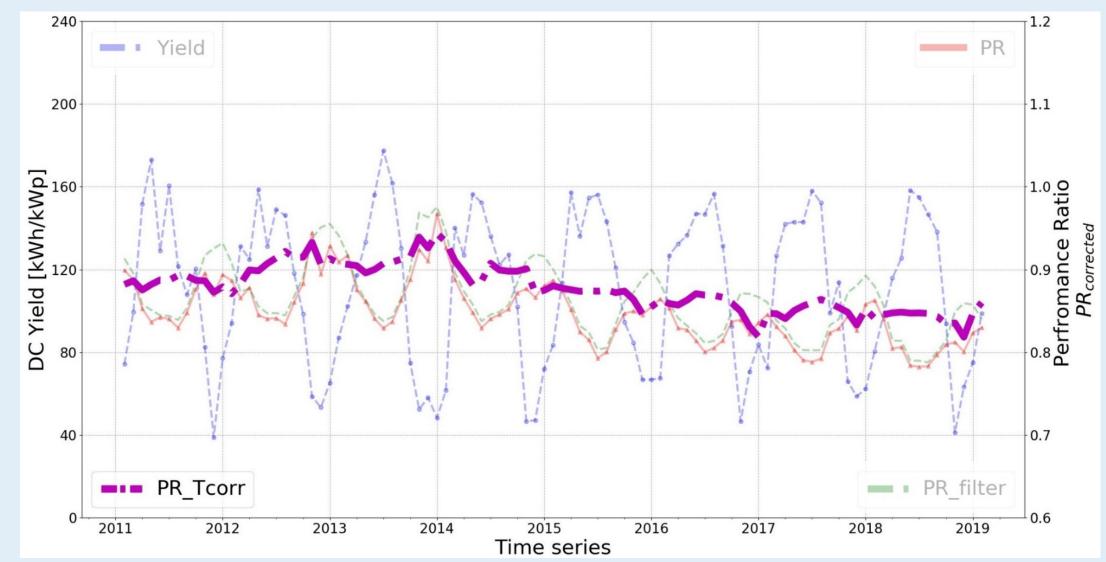
nr.	name	technology	Stratigraphy	Frame	k _{Tmod,c} (K. m²/W)	RMSE _{k_T}
1	CIGS3	CIGS	glass-glass (G-G)	WF	0.037	2.3
2	mc-Si4	m-Si-back contact	glass-tedlar (G-T)	WF	0.029	2.0
3	mc-Si3	m-Si	glass-tedlar(G-T)	WF	0.032	2.2
4	mc-Si1	m-Si	glass-glass (G-G)	NF	0.033	2.0
5	mc-Si2	m-Si	glass-glass-black sheet (G-G₅)	NF	0.035	2.4
6	1j-a-Si2	a-Si	glass-tedlar(G-T)	WF	0.031	1.7

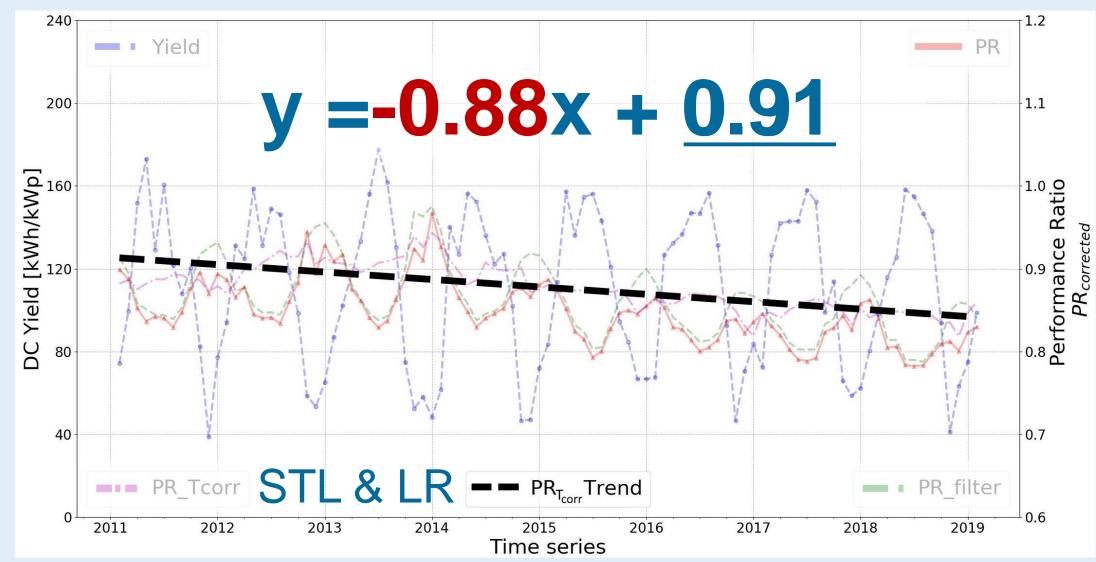



Maturi L., BiPV System Performance and Efficiency Drops: Overview on PV Module Temperature Conditions of Different Module Types, Energy Procedia 48 2014 1311-1319


Performance Loss Rate







Work in progress

Factors affecting the overall PLR

- Data quality
- Filtering
- Metrics
- Methodologies

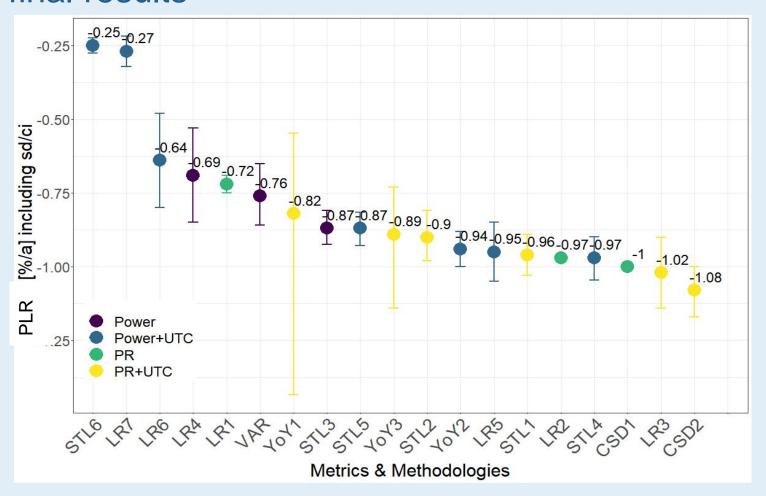
3 approaches to assess PLR results

- Shared algorithms/filtering used on shared data
- Confidential algorithms/filtering used on shared data
- Shared algorithms/filtering used on confidential data

eurac research

Work in progress

First step is to benchmark different existing methodologies to see initial differences in the final results



Work in progress

Benchmark will be extended to several PV plants to understand shortcomings of certain methodologies

"Low" quality data

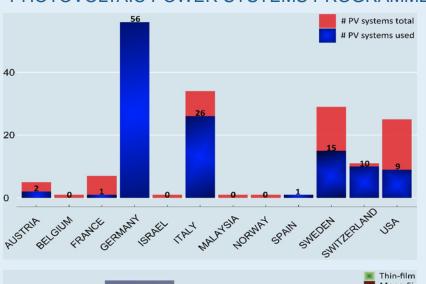
- pre-processed
- given PR/Power/Energy production
- Low resolution
- used only to compare PLR methods

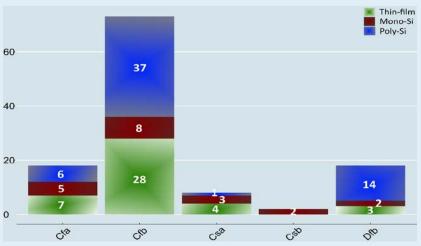
"High" quality data

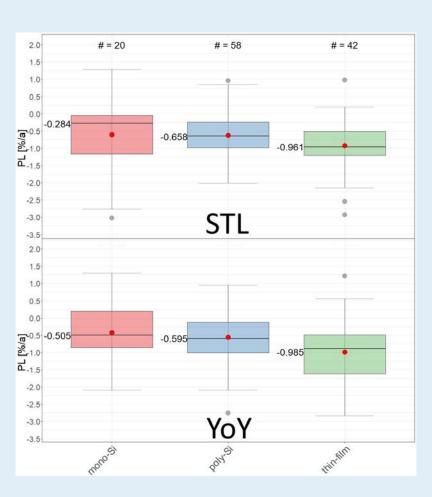
- Unfiltered PV system time series of high resolution
- can be used to compare performance models
- and filtering criteria

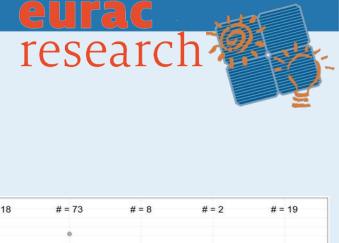
Work in progress (Task 13)

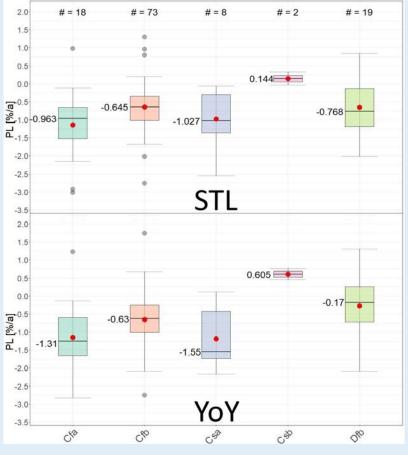
Benchmark will be extended to several PV plants to understand


shortcomings of certain methodologies

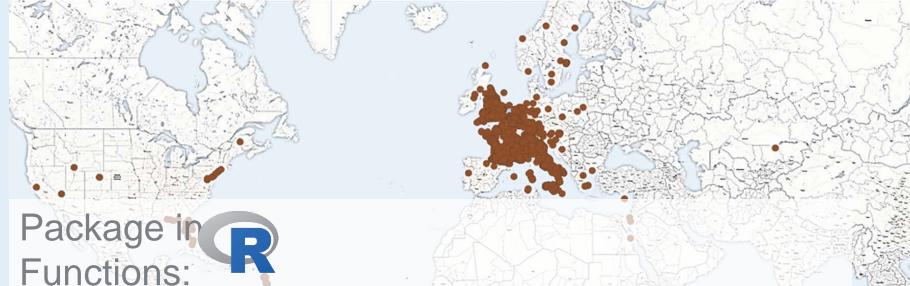





Is the selection of accurate methodologies dependent on the prevailing climate?


PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

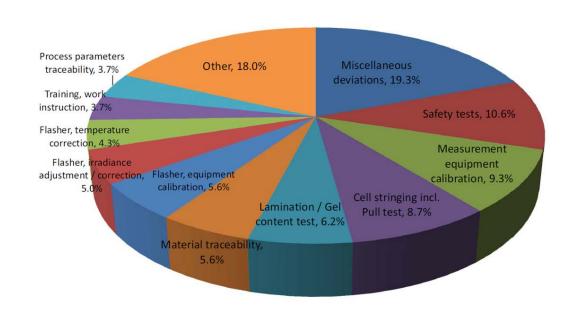
Performance Loss Rates of PV systems of Task 13 database, Sascha Lindig, David Moser, Alan Curran and Roger French, IEEE PVSC Chicago 2019


PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

PVPS TASK 13


- Pre-defined filters
- Modelling of module temperature (NOCT and Sandia)
- PR calculation, temperature correction, monthly aggregation
- PLR calculation by applying STL and SLR
- Download of satellite irradiance & transposition to POA

Quantification of the economic impact of technical risks



Shading problems due to nearby object / bad planning

Quantification of the economic impact of technical risks

161 deviations in 73 factory inspections carried out in around 2 years were identified, resulting in an average of 2.2 deviations per inspection

Many deviations are related to determination of Pn. Overestimation of output power is a problem

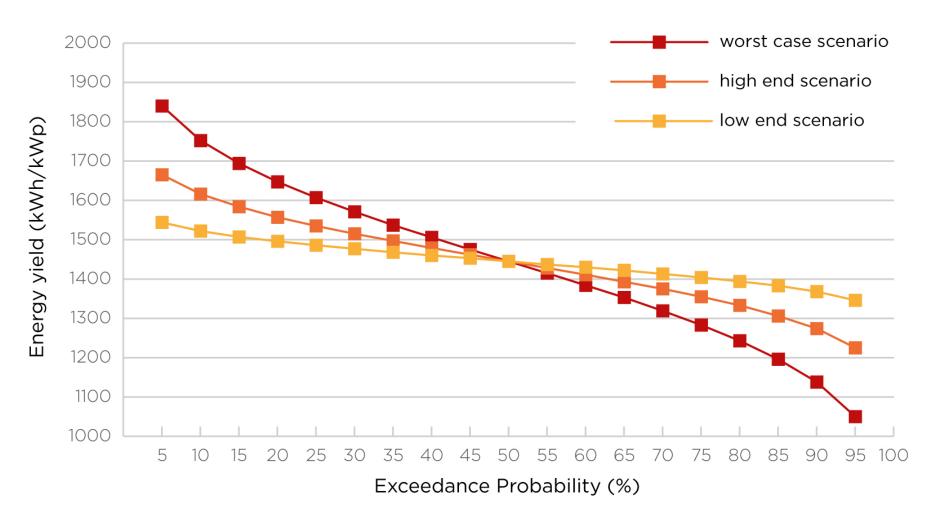
Typical uncertainty range in LTYA

	Uncertainty	Range
Solar resource	Climate variability	±4% - ±7%
	Irradiation quantification	±2% - ±5%
	Conversion to POA	±2% - ±5%
PV modeling	Temperature model	1°C - 2°C
	PV array model	±1% - ±3%
	PV inverter model	±0.2% - ±0.5%
Other	Soiling	±5% - ±6%
	Mismatch	
	Degradation	
	Cabling	
	Availability	
Overall uncertainty on estimated yield		±5% - ±10%

Typical uncertainty values (irradiance, temperature, soiling, shading, etc): ±5-10%

Effect	Overall uncertainty range (1 STD)
Insolation variability	± 4-7% (see 5.1.1 in [1])
POA transposition model	± 2-5% (see 5.1.1 in [1])
Temperature coefficients and	± 0.02%/°C (5% relative error for crystalline silicon based
temperature effects	modules) (lab measurements)
Temperature deviation due to	$1-2 ^{\circ}\text{C} (\pm 0.5-1\%) (\text{see } 5.1.3 \text{in } [1])$
environmental conditions	Up to ±2% if environmental conditions are not included
PV array and inverter model	$\pm 0.2\%$ to $\pm 0.5\%$ (see 5.1.3 in [1]) for the inverter model
	$\pm 1\%$ to $\pm 3\%$ for the PV array model
Degradation	± 0.25-2% (see 5.1.2 in [1], [2])
Shading	Site dependent
Soiling	\pm 2% (see 5.1.3 in [1]) (Also site dependent)
Spectral Mismatch	± 0.01% - 9% (depending on PV technologies, [3])
(modelled)	\pm 1% to \pm 1.5% for c-Si
Nominal power	±1-2%
Overall uncertainty	± 5-10%

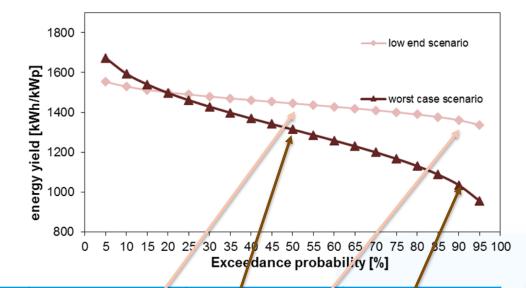
^[1] D. Moser et al., "Technical Risks in PV Projects." Solar Bankability Deliverable www.solarbankability.com


^[2] G. Belluardo, P. Ingenhoven, W. Sparber, J. Wagner, P. Weihs, and D. Moser, "Novel method for the improvement in the evaluation of outdoor performance loss rate in different PV technologies and comparison with two other methods," *Solar Energy*, vol. 117, pp. 139–152, Jul. 2015.

^[3] G. Belluardo, G. Barchi, D. Baumgartner, M. Rennhofer, P. Weihs, and D. Moser, "Uncertainty analysis of a radiative transfer model using Monte Carlo method within 280–2500 nm region," *Solar Energy*, vol. 132, pp. 558–569, Jul. 2016

Planning

- Risks to which we can assign an uncertainty (e.g. irradiance)
- → Impact on financial exceedance probability parameters


Planning

- Risks to which we can assign an uncertainty (e.g. irradiance)
- → Impact on financial exceedance probability parameters

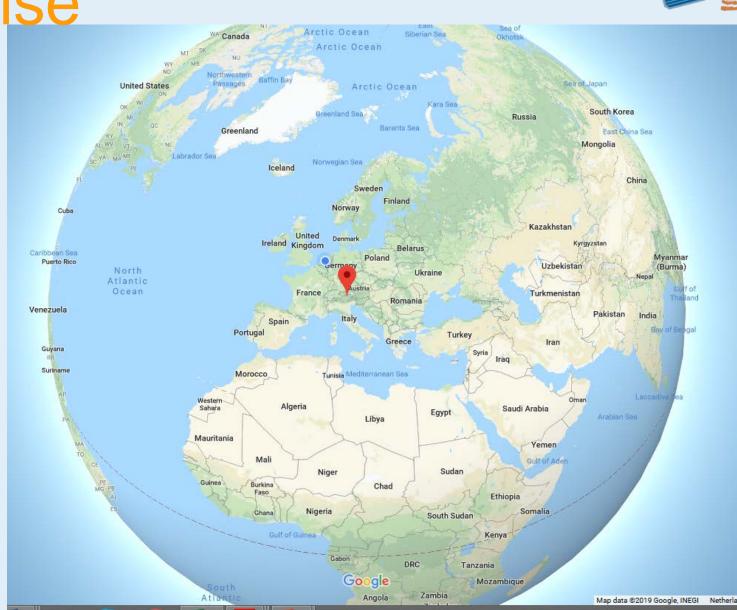
Objectives:

- More precise estimation of uncertainty in yield estimation
- Reduction of uncertainty

	σ (k=1)	P50 (kWh/kV/p)	P90 (kWh/kW,s)	P90/P50 (P50 reference case)
Ref. case (sum of squares)	8.7%	1445	1283	89%
Low end scenario	4.6%	1445	1365	94%
High end scenario	9.3%	1445	1273	88%
Worst case scenario	16.6%	1445	1138	79%
Worst case scenario (different mean value)	16.6%	1314	1034	72%

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

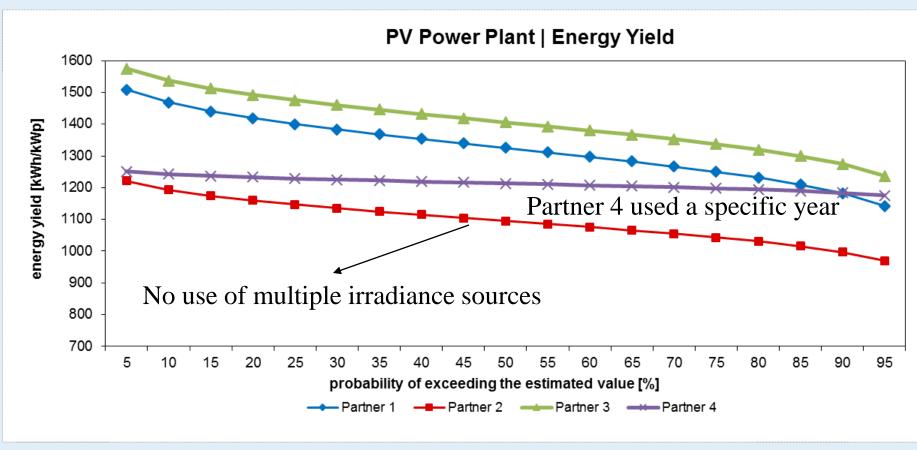
Task 13 YA exercise



Location: Bolzano, Italy Data available since August 2010 Technology: polycrystalline-Si

Real Yield Assessments (anonymized) provided by T13 partners will be analysed and benchmarked.

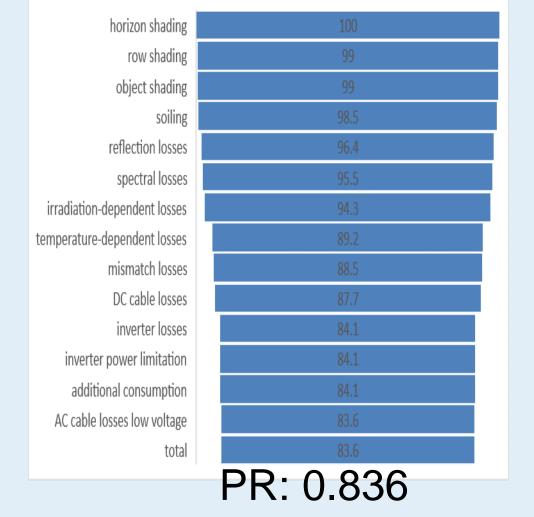
Uncertainty scenarios will be created to show impact on P90/P50



Yield assessment on selected sites

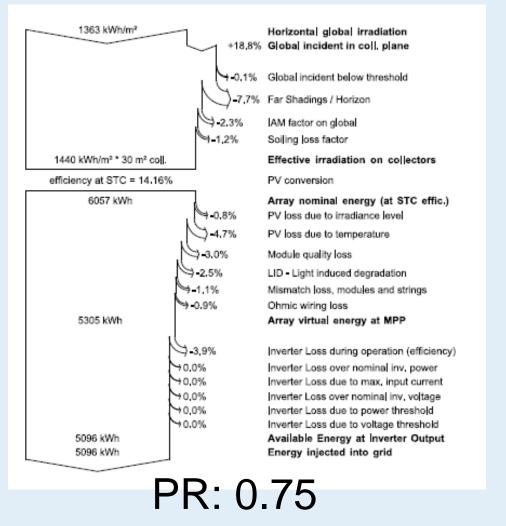
Parameter	Assumption
Location	Given Latitude/Longitude, tilt angle and azimuth
Irradiance and transposition	Each independent YA will use their favourite database
Temperature	Each independent YA will use their favourite database
Technology and mismatch	Technology Given, each YA will apply their own considerations
Inverter	Given
Shading	Given shading diagram
Soiling	Each independent YA will apply their own considerations
Wind speed	Each independent YA will use their favourite database
Long term insolation effects	Each independent YA will apply their own considerations
Degradation	Each independent YA will apply their own considerations
Snow loss / snow fall	Each independent YA will apply their own considerations
Availability	Each independent YA will apply their own considerations
Uncertainties —	Please provide uncertainties for each parameter (when possible) and for the yield (compulsory). Also please provide the type of assumed distribution for each parameter (when available) and for the Yield (compulsory)

Initial Yield Assessment

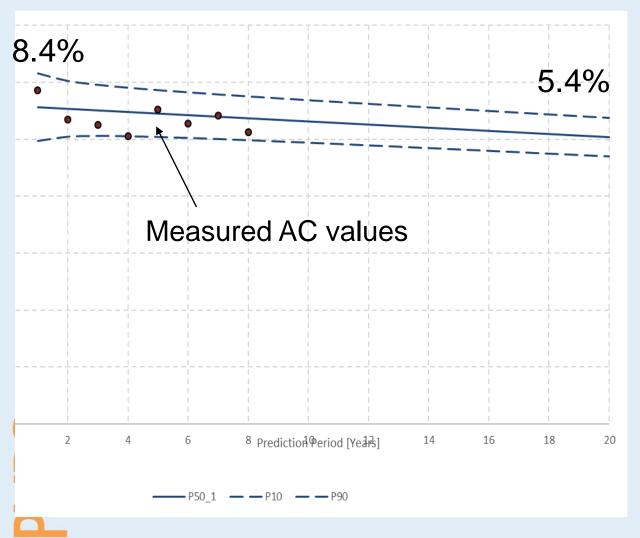


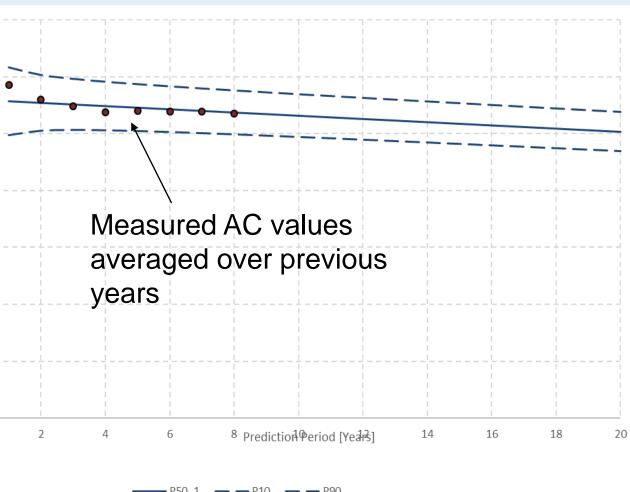
	P50			P90	P90/P50
	[kWh/kWp]	σ (k=2)	σ (k=2)	[kWh/kWp]	ratio
Partner 1	1325	8.40%	111	1183	0.89
Partner 2	1095	7.00%	77	997	0.91
Partner 3	1406	7.30%	103	1274	0.91
Partner 4	1213	1.90%	23	1184	0.98

Derating factors


Partner 3

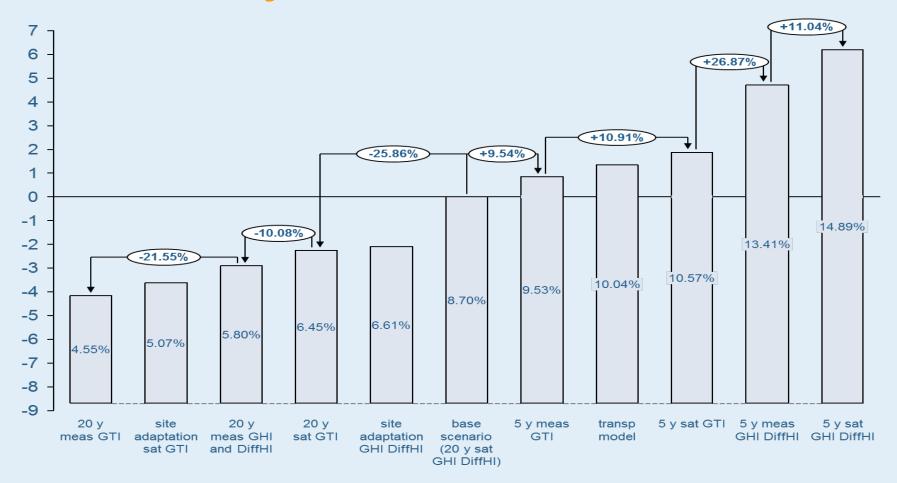
Partner 4





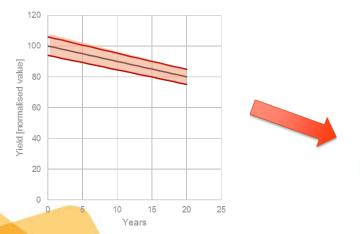
PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

LTYA / LTYP



PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Uncertainty scenarios


Based on the findings of the benchmarking exercise we will show how uncertainty plays a role for various parameters

Quantification of the economic impact of technical risks

- Risks to which we can assign a Cost Priority Number CPN (e.g. module and inverter failure) given in Euros/kWp/year
- → Impact on cash flow

Development of Risk scenarios

Procedure for the calculation of a Cost Priority Number (CPN)

Creating a cost-based Failure Modes and Effects Analysis (FMEA) for PV

a) Economic impact due to downtime and/or power loss (kWh to Euros)

- Failures might cause downtime or % in power loss

- Time is from failure to repair/substitution and should include: time to detection, response time, repair/substitution time

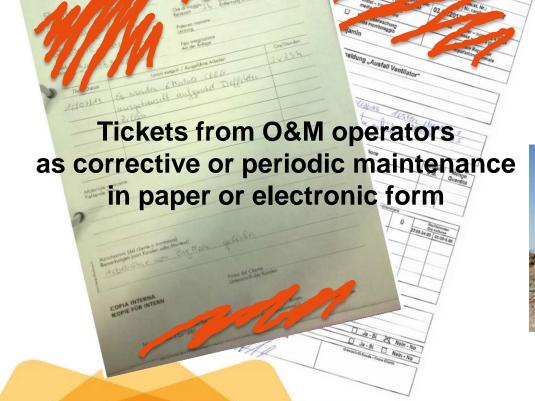
- Failures at component level might affect other components (e.g. module failure might bring down the whole string)

b) Economic impact due to repair/substitution costs (Euros)

- Cost of detection (field inspection, indoor measurements, etc)
- Cost of transportation of component
- Cost of labour (linked to downtime)
- Cost of repair/substitution

Income reduction
Savings reduction

Increase in maintenance costs Reduction of reserves


Technical Risks collection

 $CPN = C_{down} + C_{fix}$

CPN is given in Euros/kWp/year

It gives an indication of the economic impact of a failure due to downtime and investment cost

Technical Risks collection

 $CPN = C_{down} + C_{fix}$

CPN is given in Euros/kW/year

It gives an indication of the economic impact of a failure due to downtime and investment cost

	Total number of plants	Total Power [kWp]	Average number of years
TOTAL	772	441676	2.7
Components	No. tickets	No. Cases	No. Components
Modules	473	678801	2058721
Inverters	476	2548	11967
Mounting structures	420	15809	43057
Connection & Distribution boxes	221	12343	20372
Cabling	614	367724	238546
Transformer station & MV/HV	53	220	558
Total	2257	1077445	2373222

- Tickets from O&M operators from preventive and corrective maintenance
- Visual and detailed PV plant inspections

Technical Risks collection: some statistics

	no. cases	no. components	Years	Share of failures	Share of failures/ year
Modules	678,640	2,058,721	2.68	33%	12%
Inverters	2,474	11,967	2.68	21%	8%

Module	Failure share
Soiling	23.4%
Shading	16.8%
EVA discoloration	11.6%
Glass breakage	6.5%
PID	5.0%

Inverter	Failure share
Fan failure and overheating	21.8%
Fault due to grounding issues	4.9%
Inverter firmware issue	3.8%
Burned supply cable and/or socket	2.2%
Polluted air filter	3.3%
Inverter pollution	1.5%

 ${\rm O}_{\rm CPN}$ from the cost-based FMEA (power loss)

occurrence	portfolio af	fected
modules	1.010%	14.958%
inverters	2.687%	22.046%
Mounting structure	0.206%	10.820%
Connection & Distribution boxes	0.145%	15.175%
Cabling	2.765%	6.855%
Transformer station & MV/HV	0.452%	0.393%

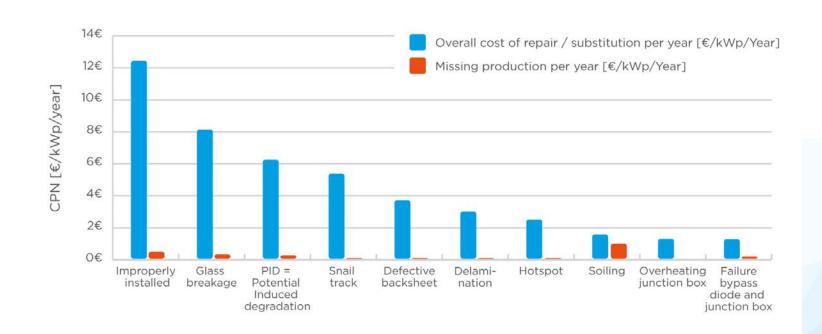
Definition of scenarios

Never detected (CPN_{ndet})

Failure is undetected. Losses due to downtime over a time ttd

• Failure fix (CPN_{failfix})

Failure is detected. 1 Month of lead time to repair/substitution



- Failures are equally distributed over time
- No increase in Performance Losses over time
- Yield is considered as an average at national level (not site specific)
- The real scenario would be a combination of the two

CPN Results - Components and Market Segments

PV modules - Utility scale

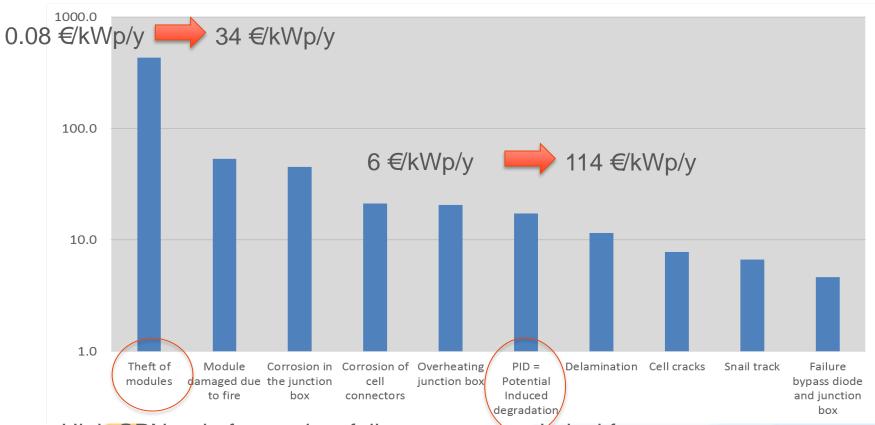
- Highest risk consists of a group of installation failures (mishandling, connection failures, missing fixation, etc.)
- Variety of failures detected by different techniques (VI, IR, EL, IV-Curves)

CPN results - Comparison studies

SOLAR BANKABILITY

• Affected components vs total components: CPN ratio

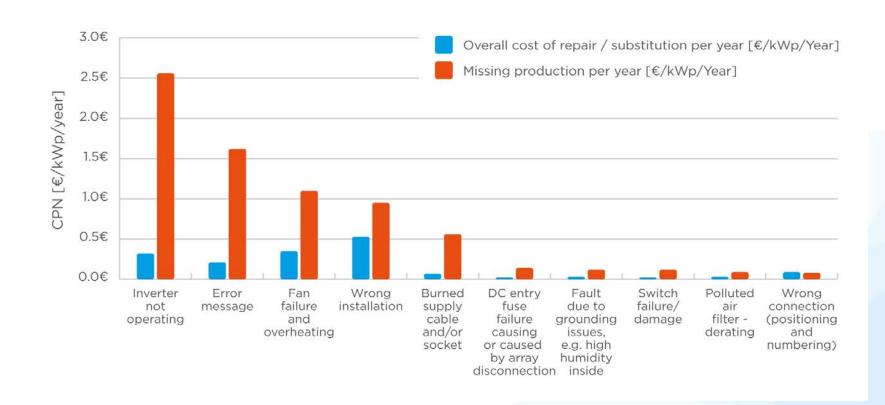
Failures calculated over the whole database



Failures calculated over the affected plants

CPN results - Comparison studies

• Some failures do not occur very often and are not equally spread over the portfolio but when they do, the economic impact is very high



High CPN ratio for product failures or non technical factors

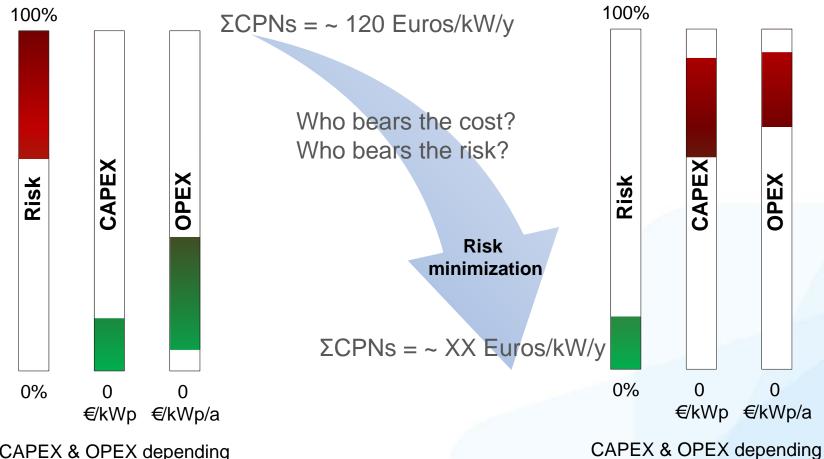
CPN Results - Components and Market Segments

SOLAR
BANKABILITY

Inverters

Technical risk framework

Α	Risk identification		
В	Risk assessment		Risk Mitigation
С	Risk management		
D	Risk controlling		Risk Transfer



www.solarbankability.eu

Risk mitigation

CAPEX & OPEX depending on mitigation measures

on mitigation measures

Mitigation Measure Approach

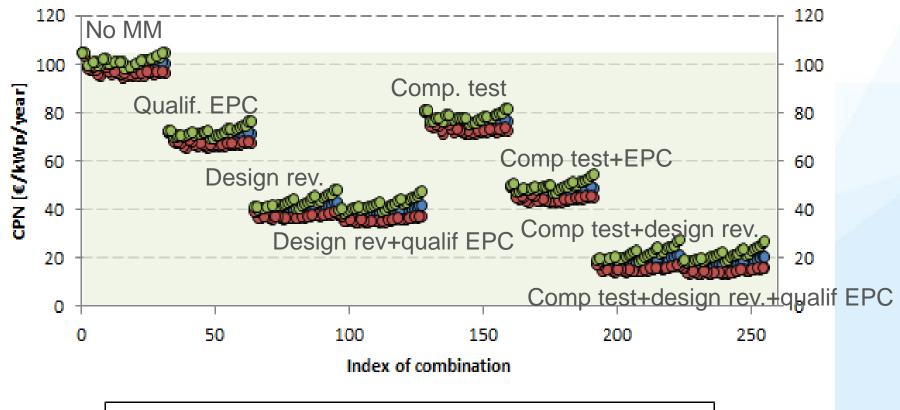
List of 8 defined MMs, their mitigation factors and affected parameters

• Preventive measures

Corrective measures

Component testing – PV modules	number of failures	
Design review + construction monitoring	number of failures	
Qualification of EPC	number of failures	
Advanced monitoring system	time to detection	
Basic monitoring system	time to detection	
Advanced inspection	time to detection	
Visual inspection	time to detection	
Spare part management	time to repair/substitution	

Impact of Applied Mitigation Measures


FIX Reference

FIX Scenario 1

New CPN results of mitigation measure combinations for different cost scenarios compared to CPN without mitigation measures

FIX Scenario 2

FIX Scenario 3

From theory to practice

Improved CPN methodology for the needs of O&M operators

When a failure occurs, e.g. performance deviation beyond allowed threshold or inverter error code generated.

An alarm is triggered

Acknowledgement of the fault by the O&M Contractor.

A maintenance ticket is opened

The technician arrives on-site with all the tools and spare parts needed to fix the problem

Problem fixed and acknowledged by the O&M Contractor.

The maintenance ticket is closed

failure time

acknowledgement time

intervention time

resolution time

Detection time

Time that it takes to detect the occurrence of a problem

Response time

Time that it takes to organise the repair or substitution

Repair time

Time that it takes the technician to fix the problem

OPTIMIZATION OF THE COST PRIORITY NUMBER (CPN) METHODOLOGY TO THE NEEDS OF A LARGE O&M OPERATOR, G. Oviedo Hernandez et al, EUPVSEC 2019, Marseille 5CV.4.19

solartrain Average costs for Automatic insertion maintenance of specific of parameters into Issues in the field based dedicated database on large scale statistics Input individual Measured H_{loss} Accurate **PR** calculation from irradiance parameters from calculation of incorporation PLR financial impact tickets sensors **0&M** C_{down} **Energy Loss** contractor **CPN** C_{fix} **KPIs** Asset management Monitoring and ticketing system data PV system metadata Improvements Calculation steps Next steps Data sources

Improved CPN methodology for the needs of O&M operators

Development of an automated and therefore time-efficient solution for extracting key parameters from maintenance tickets to gain statistical insights from a large number of PV plants.

Development of a software tool for field technicians that would allow the precise and error-free recording of standardised parameters for the calculation of the O&M contractors KPIs necessary for an efficient implementation of the methodology

The O&M field practices must definitely move away from a manual input of tickets in text format and adopt a more standardised approach when human intervention is limited

Take home messages

- Link high quality to low risk in PV project financing
- Risk categorisation
- Common nomenclature
- Standardised quantification
- Availability of large datasets is key (field inspections, monitored data, O&M tickets, etc)
- Dataset interoperability through digitalisation
- Improved Yield Assessment (reduction of uncertainty)

eurac research

"We ensure quality and sustainability in a PV driven energy transition"

Thank you!

david.moser@eurac.edu

- f fb.com/euracresearch
- @EURAC
- in www.linkedin.com/company/euracresearch/